Implement a stack using single queue
Last Updated :
31 Jul, 2022
Improve
We are given queue data structure, the task is to implement stack using only given queue data structure.
We have discussed a solution that uses two queues. In this article, a new solution is discussed that uses only one queue. This solution assumes that we can find size of queue at any point. The idea is to keep newly inserted element always at front of queue, keeping order of previous elements same.
Below are complete steps.
// x is the element to be pushed and s is stack push(s, x) 1) Let size of q be s. 1) Enqueue x to q 2) One by one Dequeue s items from queue and enqueue them. // Removes an item from stack pop(s) 1) Dequeue an item from q
Below is implementation of the idea.
C++
// C++ program to implement a stack using // single queue #include<bits/stdc++.h> using namespace std; // User defined stack that uses a queue class Stack { queue< int >q; public : void push( int val); void pop(); int top(); bool empty(); }; // Push operation void Stack::push( int val) { // Get previous size of queue int s = q.size(); // Push current element q.push(val); // Pop (or Dequeue) all previous // elements and put them after current // element for ( int i=0; i<s; i++) { // this will add front element into // rear of queue q.push(q.front()); // this will delete front element q.pop(); } } // Removes the top element void Stack::pop() { if (q.empty()) cout << "No elements\n" ; else q.pop(); } // Returns top of stack int Stack::top() { return (q.empty())? -1 : q.front(); } // Returns true if Stack is empty else false bool Stack::empty() { return (q.empty()); } // Driver code int main() { Stack s; s.push(10); s.push(20); cout << s.top() << endl; s.pop(); s.push(30); s.pop(); cout << s.top() << endl; return 0; } |
Java
// Java program to implement stack using a // single queue import java.util.LinkedList; import java.util.Queue; public class stack { Queue<Integer> q = new LinkedList<Integer>(); // Push operation void push( int val) { // get previous size of queue int size = q.size(); // Add current element q.add(val); // Pop (or Dequeue) all previous // elements and put them after current // element for ( int i = 0 ; i < size; i++) { // this will add front element into // rear of queue int x = q.remove(); q.add(x); } } // Removes the top element int pop() { if (q.isEmpty()) { System.out.println( "No elements" ); return - 1 ; } int x = q.remove(); return x; } // Returns top of stack int top() { if (q.isEmpty()) return - 1 ; return q.peek(); } // Returns true if Stack is empty else false boolean isEmpty() { return q.isEmpty(); } // Driver program to test above methods public static void main(String[] args) { stack s = new stack(); s.push( 10 ); s.push( 20 ); System.out.println( "Top element :" + s.top()); s.pop(); s.push( 30 ); s.pop(); System.out.println( "Top element :" + s.top()); } } // This code is contributed by Rishabh Mahrsee |
Python3
# Python3 program to implement stack using a # single queue q = [] # append operation def append(val): # get previous size of queue size = len (q) # Add current element q.append(val); # Pop (or Dequeue) all previous # elements and put them after current # element for i in range (size): # this will add front element into # rear of queue x = q.pop( 0 ); q.append(x); # Removes the top element def pop(): if ( len (q) = = 0 ): print ( "No elements" ); return - 1 ; x = q.pop( 0 ); return x; # Returns top of stack def top(): if ( len (q) = = 0 ): return - 1 ; return q[ - 1 ] # Returns true if Stack is empty else false def isEmpty(): return len (q) = = 0 ; # Driver program to test above methods if __name__ = = '__main__' : s = [] s.append( 10 ); s.append( 20 ); print ( "Top element :" + str (s[ - 1 ])); s.pop(); s.append( 30 ); s.pop(); print ( "Top element :" + str (s[ - 1 ])); # This code is contributed by rutvik_56. |
C#
// C# program to implement stack using a // single queue using System; using System.Collections.Generic; public class stack { Queue< int > q = new Queue< int >(); // Push operation void push( int val) { // get previous size of queue int size = q.Count; // Add current element q.Enqueue(val); // Pop (or Dequeue) all previous // elements and put them after current // element for ( int i = 0; i < size; i++) { // this will add front element into // rear of queue int x = q.Dequeue(); q.Enqueue(x); } } // Removes the top element int pop() { if (q.Count == 0) { Console.WriteLine( "No elements" ); return -1; } int x = q.Dequeue(); return x; } // Returns top of stack int top() { if (q.Count == 0) return -1; return q.Peek(); } // Returns true if Stack is empty else false bool isEmpty() { if (q.Count == 0) return true ; return false ; } // Driver program to test above methods public static void Main(String[] args) { stack s = new stack(); s.push(10); s.push(20); Console.WriteLine( "Top element :" + s.top()); s.pop(); s.push(30); s.pop(); Console.WriteLine( "Top element :" + s.top()); } } // This code has been contributed by Rajput-Ji |
Javascript
<script> // Javascript program to implement stack using a single queue let q = []; // Push operation function Push(val) { // get previous size of queue let Size = q.length; // Add current element q.push(val); // Pop (or Dequeue) all previous // elements and put them after current // element for (let i = 0; i < Size; i++) { // this will add front element into // rear of queue let x = q[0]; q.shift(); q.push(x); } } // Removes the top element function Pop() { if (isEmpty()) { document.write( "No elements" + "</br>" ); return -1; } let x = q[0]; q.shift(); return x; } // Returns top of stack function Top() { if (isEmpty()) return -1; return q[0]; } // Returns true if Stack is empty else false function isEmpty() { if (q.length == 0) return true ; return false ; } Push(10); Push(20); document.write(Top() + "</br>" ); Pop(); Push(30); Pop(); document.write(Top() + "</br>" ); // This code is contributed by decode2207. </script> |
Output
20 10
Time complexity: O(N) where N is size of stack
Auxiliary Space: O(N)