Open In App

Inorder Tree Traversal without recursion and without stack!

Last Updated : 16 Jun, 2023
Improve
Improve
Like Article
Like
Save
Share
Report
 

Using Morris Traversal, we can traverse the tree without using stack and recursion. The idea of Morris Traversal is based on Threaded Binary Tree. In this traversal, we first create links to Inorder successor and print the data using these links, and finally revert the changes to restore original tree. 

1. Initialize current as root 
2. While current is not NULL
   If the current does not have left child
      a) Print current’s data
      b) Go to the right, i.e., current = current->right
   Else
      a) Find rightmost node in current left subtree OR
              node whose right child == current.
         If we found right child == current
             a) Update the right child as NULL of that node whose right child is current
             b) Print current’s data
             c) Go to the right, i.e. current = current->right
         Else
             a) Make current as the right child of that rightmost 
                node we found; and 
             b) Go to this left child, i.e., current = current->left

Although the tree is modified through the traversal, it is reverted back to its original shape after the completion. Unlike Stack based traversal, no extra space is required for this traversal.

C++




#include <bits/stdc++.h>
using namespace std;
 
/* A binary tree tNode has data, a pointer to left child
   and a pointer to right child */
struct tNode {
    int data;
    struct tNode* left;
    struct tNode* right;
};
 
/* Function to traverse the binary tree without recursion
   and without stack */
void MorrisTraversal(struct tNode* root)
{
    struct tNode *current, *pre;
 
    if (root == NULL)
        return;
 
    current = root;
    while (current != NULL) {
 
        if (current->left == NULL) {
            cout << current->data << " ";
            current = current->right;
        }
        else {
 
            /* Find the inorder predecessor of current */
            pre = current->left;
            while (pre->right != NULL
                   && pre->right != current)
                pre = pre->right;
 
            /* Make current as the right child of its
               inorder predecessor */
            if (pre->right == NULL) {
                pre->right = current;
                current = current->left;
            }
 
            /* Revert the changes made in the 'if' part to
               restore the original tree i.e., fix the right
               child of predecessor */
            else {
                pre->right = NULL;
                cout << current->data << " ";
                current = current->right;
            } /* End of if condition pre->right == NULL */
        } /* End of if condition current->left == NULL*/
    } /* End of while */
}
 
/* UTILITY FUNCTIONS */
/* Helper function that allocates a new tNode with the
   given data and NULL left and right pointers. */
struct tNode* newtNode(int data)
{
    struct tNode* node = new tNode;
    node->data = data;
    node->left = NULL;
    node->right = NULL;
 
    return (node);
}
 
/* Driver program to test above functions*/
int main()
{
 
    /* Constructed binary tree is
            1
          /   \
         2     3
       /   \
      4     5
  */
    struct tNode* root = newtNode(1);
    root->left = newtNode(2);
    root->right = newtNode(3);
    root->left->left = newtNode(4);
    root->left->right = newtNode(5);
 
    MorrisTraversal(root);
 
    return 0;
}
 
// This code is contributed by Sania Kumari Gupta (kriSania804)


C




#include <stdio.h>
#include <stdlib.h>
 
/* A binary tree tNode has data, a pointer to left child
   and a pointer to right child */
typedef struct tNode {
    int data;
    struct tNode* left;
    struct tNode* right;
}tNode;
 
/* Function to traverse the binary tree without recursion
   and without stack */
void MorrisTraversal(tNode* root)
{
    tNode *current, *pre;
 
    if (root == NULL)
        return;
 
    current = root;
    while (current != NULL) {
 
        if (current->left == NULL) {
            printf("%d ", current->data);
            current = current->right;
        }
        else {
 
            /* Find the inorder predecessor of current */
            pre = current->left;
            while (pre->right != NULL
                   && pre->right != current)
                pre = pre->right;
 
            /* Make current as the right child of its
               inorder predecessor */
            if (pre->right == NULL) {
                pre->right = current;
                current = current->left;
            }
 
            /* Revert the changes made in the 'if' part to
               restore the original tree i.e., fix the right
               child of predecessor */
            else {
                pre->right = NULL;
                printf("%d ", current->data);
                current = current->right;
            } /* End of if condition pre->right == NULL */
        } /* End of if condition current->left == NULL*/
    } /* End of while */
}
 
/* UTILITY FUNCTIONS */
/* Helper function that allocates a new tNode with the
   given data and NULL left and right pointers. */
tNode* newtNode(int data)
{
    tNode* node = (tNode *)malloc(sizeof(tNode));
    node->data = data;
    node->left = NULL;
    node->right = NULL;
 
    return (node);
}
 
/* Driver program to test above functions*/
int main()
{
 
    /* Constructed binary tree is
            1
          /   \
         2     3
       /   \
      4     5
  */
    tNode* root = newtNode(1);
    root->left = newtNode(2);
    root->right = newtNode(3);
    root->left->left = newtNode(4);
    root->left->right = newtNode(5);
 
    MorrisTraversal(root);
 
    return 0;
}
 
// This code is contributed by Sania Kumari Gupta (kriSania804)


Java




// Java program to print inorder
// traversal without recursion
// and stack
 
/* A binary tree tNode has data,
   a pointer to left child
   and a pointer to right child */
class tNode {
    int data;
    tNode left, right;
 
    tNode(int item)
    {
        data = item;
        left = right = null;
    }
}
 
class BinaryTree {
    tNode root;
 
    /* Function to traverse a
       binary tree without recursion
       and without stack */
    void MorrisTraversal(tNode root)
    {
        tNode current, pre;
 
        if (root == null)
            return;
 
        current = root;
        while (current != null)
        {
            if (current.left == null)
            {
                System.out.print(current.data + " ");
                current = current.right;
            }
            else {
                /* Find the inorder
                    predecessor of current
                 */
                pre = current.left;
                while (pre.right != null
                       && pre.right != current)
                    pre = pre.right;
 
                /* Make current as right
                   child of its
                 * inorder predecessor */
                if (pre.right == null) {
                    pre.right = current;
                    current = current.left;
                }
 
                /* Revert the changes made
                   in the 'if' part
                   to restore the original
                   tree i.e., fix
                   the right child of predecessor*/
                else
                {
                    pre.right = null;
                    System.out.print(current.data + " ");
                    current = current.right;
                } /* End of if condition pre->right == NULL
                   */
 
            } /* End of if condition current->left == NULL*/
 
        } /* End of while */
    }
 
    // Driver Code
    public static void main(String args[])
    {
        /* Constructed binary tree is
               1
             /   \
            2      3
          /   \
         4     5
        */
        BinaryTree tree = new BinaryTree();
        tree.root = new tNode(1);
        tree.root.left = new tNode(2);
        tree.root.right = new tNode(3);
        tree.root.left.left = new tNode(4);
        tree.root.left.right = new tNode(5);
 
        tree.MorrisTraversal(tree.root);
    }
}
 
// This code has been contributed by Mayank
// Jaiswal(mayank_24)


Python3




class TreeNode:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
 
def morris_traversal(root):
    current = root
 
    while current:
        if current.left is None:
            print(current.data, end=" ")
            current = current.right
        else:
            # Find the inorder predecessor of current
            pre = current.left
            while pre.right and pre.right != current:
                pre = pre.right
 
            # Make current as the right child of its inorder predecessor
            if pre.right is None:
                pre.right = current
                current = current.left
            # Revert the changes made to restore the original tree and print current node
            else:
                pre.right = None
                print(current.data, end=" ")
                current = current.right
 
# Driver program to test above functions
if __name__ == '__main__':
    """
    Constructed binary tree is
            1
          /   \
         2     3
       /   \
      4     5
    """
    root = TreeNode(1)
    root.left = TreeNode(2)
    root.right = TreeNode(3)
    root.left.left = TreeNode(4)
    root.left.right = TreeNode(5)
 
    morris_traversal(root)


C#




// C# program to print inorder traversal
// without recursion and stack
using System;
 
/* A binary tree tNode has data,
    pointer to left child
    and a pointer to right child */
 
class BinaryTree {
    tNode root;
 
    public class tNode {
        public int data;
        public tNode left, right;
 
        public tNode(int item)
        {
            data = item;
            left = right = null;
        }
    }
    /* Function to traverse binary tree without
     recursion and without stack */
    void MorrisTraversal(tNode root)
    {
        tNode current, pre;
 
        if (root == null)
            return;
 
        current = root;
        while (current != null)
        {
            if (current.left == null)
            {
                Console.Write(current.data + " ");
                current = current.right;
            }
            else {
                /* Find the inorder
                    predecessor of current
                 */
                pre = current.left;
                while (pre.right != null
                       && pre.right != current)
                    pre = pre.right;
 
                /* Make current as right child
                of its inorder predecessor */
                if (pre.right == null)
                {
                    pre.right = current;
                    current = current.left;
                }
 
                /* Revert the changes made in
                if part to restore the original
                tree i.e., fix the right child
                of predecessor*/
                else
                {
                    pre.right = null;
                    Console.Write(current.data + " ");
                    current = current.right;
                } /* End of if condition pre->right == NULL
                   */
 
            } /* End of if condition current->left == NULL*/
 
        } /* End of while */
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        /* Constructed binary tree is
            1
            / \
            2     3
        / \
        4     5
        */
        BinaryTree tree = new BinaryTree();
        tree.root = new tNode(1);
        tree.root.left = new tNode(2);
        tree.root.right = new tNode(3);
        tree.root.left.left = new tNode(4);
        tree.root.left.right = new tNode(5);
 
        tree.MorrisTraversal(tree.root);
    }
}
 
// This code has been contributed
// by Arnab Kundu


Javascript




<script>
 
// JavaScript program to print inorder
// traversal without recursion
// and stack
  
/* A binary tree tNode has data,
   a pointer to left child
   and a pointer to right child */
class tNode
{
    constructor(item)
    {
        this.data = item;
        this.left = this.right = null;
    }
}
 
let root;
 
/* Function to traverse a
       binary tree without recursion
       and without stack */
function MorrisTraversal(root)
{
    let current, pre;
  
        if (root == null)
            return;
  
        current = root;
        while (current != null)
        {
            if (current.left == null)
            {
                document.write(current.data + " ");
                current = current.right;
            }
            else {
                /* Find the inorder
                    predecessor of current
                 */
                pre = current.left;
                while (pre.right != null
                       && pre.right != current)
                    pre = pre.right;
  
                /* Make current as right
                   child of its
                 * inorder predecessor */
                if (pre.right == null) {
                    pre.right = current;
                    current = current.left;
                }
  
                /* Revert the changes made
                   in the 'if' part
                   to restore the original
                   tree i.e., fix
                   the right child of predecessor*/
                else
                {
                    pre.right = null;
                    document.write(current.data + " ");
                    current = current.right;
                } /* End of if condition pre->right == NULL
                   */
  
            } /* End of if condition current->left == NULL*/
  
        } /* End of while */
}
 
// Driver Code
/* Constructed binary tree is
               1
             /   \
            2      3
          /   \
         4     5
        */
 
root = new tNode(1);
root.left = new tNode(2);
root.right = new tNode(3);
root.left.left = new tNode(4);
root.left.right = new tNode(5);
 
MorrisTraversal(root);
 
// This code is contributed by avanitrachhadiya2155
 
</script>


Output

4 2 5 1 3 

Time Complexity: O(n) If we take a closer look, we can notice that every edge of the tree is traversed at most three times. And in the worst case, the same number of extra edges (as input tree) are created and removed.
Auxiliary Space: O(1) since using only constant variables

References: 
www.liacs.nl/~deutz/DS/september28.pdf 
www.scss.tcd.ie/disciplines/software_systems/…/HughGibbonsSlides.pdf
Please write comments if you find any bug in above code/algorithm, or want to share more information about stack Morris Inorder Tree Traversal.
 



Similar Reads

Inorder Non-threaded Binary Tree Traversal without Recursion or Stack
We have discussed Thread based Morris Traversal. Can we do inorder traversal without threads if we have parent pointers available to us? Input: Root of Below Tree [Every node of tree has parent pointer also] 10 / \ 5 100 / \ 80 120 Output: 5 10 80 100 120 The code should not extra space (No Recursion and stack) In inorder traversal, we follow "left
11 min read
Inorder Tree Traversal without Recursion
In this post, we have seen in detail about the Inorder traversal and how it is implemented using recursion. Here in this post, we will discuss methods to implement inorder traversal without using recursion. Inorder Traversal using Stack:As we already know, recursion can also be implemented using stack. Here also we can use a stack to perform inorde
15+ min read
Postorder traversal of Binary Tree without recursion and without stack
Given a binary tree, perform postorder traversal. Prerequisite - Inorder/preorder/postorder traversal of tree We have discussed the below methods for postorder traversal. 1) Recursive Postorder Traversal. 2) Postorder traversal using Stack. 2) Postorder traversal using two Stacks. Approach 1 The approach used is based on using an unordered set to k
15 min read
Preorder, Postorder and Inorder Traversal of a Binary Tree using a single Stack
Given a binary tree, the task is to print all the nodes of the binary tree in Pre-order, Post-order, and In-order iteratively using only one stack traversal. Examples: Input: Output:Preorder Traversal: 1 2 3Inorder Traversal: 2 1 3Postorder Traversal: 2 3 1 Input: Output:Preorder traversal: 1 2 4 5 3 6 7Inorder traversal: 4 2 5 1 6 3 7Post-order tr
13 min read
Pre Order, Post Order and In Order traversal of a Binary Tree in one traversal | (Using recursion)
Given a binary tree, the task is to print all the nodes of the binary tree in Pre-order, Post-order, and In-order in one iteration. Examples: Input: Output: Pre Order: 1 2 4 5 3 6 7 Post Order: 4 5 2 6 7 3 1 In Order: 4 2 5 1 6 3 7 Input: Output: Pre Order: 1 2 4 8 12 5 9 3 6 7 10 11 Post Order: 12 8 4 9 5 2 6 10 11 7 3 1 In Order: 8 12 4 2 9 5 1 6
9 min read
Cartesian tree from inorder traversal | Segment Tree
Given an in-order traversal of a cartesian tree, the task is to build the entire tree from it. Examples: Input: arr[] = {1, 5, 3} Output: 1 5 3 5 / \ 1 3 Input: arr[] = {3, 7, 4, 8} Output: 3 7 4 8 8 / 7 / \ 3 4 Approach: We have already seen an algorithm here that takes O(NlogN) time on an average but can get to O(N2) in the worst case.In this art
13 min read
Calculate height of Binary Tree using Inorder and Level Order Traversal
Given inorder traversal and Level Order traversal of a Binary Tree. The task is to calculate the height of the tree without constructing it. Example: Input : Input: Two arrays that represent Inorder and level order traversals of a Binary Tree in[] = {4, 8, 10, 12, 14, 20, 22}; level[] = {20, 8, 22, 4, 12, 10, 14}; Output : 4 The binary tree that ca
12 min read
Check if given inorder and preorder traversals are valid for any Binary Tree without building the tree
cGiven two arrays pre[] and in[] representing the preorder and inorder traversal of the binary tree, the task is to check if the given traversals are valid for any binary tree or not without building the tree. If it is possible, then print Yes. Otherwise, print No. Examples: Input: pre[] = {1, 2, 4, 5, 7, 3, 6, 8}, in[] = {4, 2, 5, 7, 1, 6, 8, 3}Ou
15+ min read
Preorder Traversal of N-ary Tree Without Recursion
Given an n-ary tree, print preorder traversal of it. Example : Preorder traversal of below tree is A B K N M J F D G E C H I L The idea is to use stack like iterative preorder traversal of binary tree. Create an empty stack to store nodes. Push the root node to the stack. Run a loop while the stack is not empty Pop the top node from stack. Print th
7 min read
Construct Special Binary Tree from given Inorder traversal
Given Inorder Traversal of a Special Binary Tree in which the key of every node is greater than keys in left and right children, construct the Binary Tree and return root. Examples: Input: inorder[] = {5, 10, 40, 30, 28} Output: root of following tree 40 / \ 10 30 / \ 5 28 Input: inorder[] = {1, 5, 10, 40, 30, 15, 28, 20} Output: root of following
14 min read
Practice Tags :