Open In App

Merge Two Binary Trees by doing Node Sum (Recursive and Iterative)

Last Updated : 13 Jul, 2022
Improve
Improve
Like Article
Like
Save
Share
Report

Given two binary trees. We need to merge them into a new binary tree. The merge rule is that if two nodes overlap, then sum node values up as the new value of the merged node. Otherwise, the non-null node will be used as the node of new tree.

Example:  

Input: 
     Tree 1            Tree 2                  
       2                 3                             
      / \               / \                            
     1   4             6   1                        
    /                   \   \                      
   5                     2   7                  

Output: Merged tree:
         5
        / \
       7   5
      / \   \ 
     5   2   7

Note: The merging process must start from the root nodes of both trees. 

Recursive Algorithm: 

  1. Traverse the tree in Pre-order fashion
  2. Check if both the tree nodes are NULL 
    1. If not, then update the value
  3. Recur for left subtrees
  4. Recur for right subtrees
  5. Return root of updated Tree

C++




// C++ program to Merge Two Binary Trees
#include <bits/stdc++.h>
using namespace std;
 
/* A binary tree node has data, pointer to left child
   and a pointer to right child */
struct Node
{
    int data;
    struct Node *left, *right;
};
 
/* Helper function that allocates a new node with the
   given data and NULL left and right pointers. */
Node *newNode(int data)
{
    Node *new_node = new Node;
    new_node->data = data;
    new_node->left = new_node->right = NULL;
    return new_node;
}
 
/* Given a binary tree, print its nodes in inorder*/
void inorder(Node * node)
{
    if (!node)
        return;
    /* first recur on left child */
    inorder(node->left);
    /* then print the data of node */
    cout<<node->data<<" ";
    /* now recur on right child */
    inorder(node->right);
}
 
/* Function to merge given two binary trees*/
Node *MergeTrees(Node * t1, Node * t2)
{
    if (!t1)
        return t2;
    if (!t2)
        return t1;
    t1->data += t2->data;
    t1->left = MergeTrees(t1->left, t2->left);
    t1->right = MergeTrees(t1->right, t2->right);
    return t1;
}
 
// Driver code
int main()
{
    /* Let us construct the first Binary Tree
            1
          /   \
         2     3
        / \     \
       4   5     6
    */
 
    Node *root1 = newNode(1);
    root1->left = newNode(2);
    root1->right = newNode(3);
    root1->left->left = newNode(4);
    root1->left->right = newNode(5);
    root1->right->right = newNode(6);
 
    /* Let us construct the second Binary Tree
           4
         /   \
        1     7
       /     /  \
      3     2    6   */
    Node *root2 = newNode(4);
    root2->left = newNode(1);
    root2->right = newNode(7);
    root2->left->left = newNode(3);
    root2->right->left = newNode(2);
    root2->right->right = newNode(6);
 
    Node *root3 = MergeTrees(root1, root2);
    printf("The Merged Binary Tree is:\n");
    inorder(root3);
    return 0;
}
 
// This code is contributed by Aditya Kumar (adityakumar129)


C




// C program to Merge Two Binary Trees
 
#include<stdio.h>
#include<stdlib.h>
 
/* A binary tree node has data, pointer to left child
   and a pointer to right child */
typedef struct Node
{
    int data;
    struct Node *left, *right;
}Node;
 
/* Helper function that allocates a new node with the
   given data and NULL left and right pointers. */
Node *newNode(int data)
{
    Node *new_node = (Node *)malloc(sizeof(Node));
    new_node->data = data;
    new_node->left = new_node->right = NULL;
    return new_node;
}
 
/* Given a binary tree, print its nodes in inorder*/
void inorder(Node * node)
{
    if (!node)
        return;
    /* first recur on left child */
    inorder(node->left);
    /* then print the data of node */
    printf("%d ", node->data);
    /* now recur on right child */
    inorder(node->right);
}
 
/* Function to merge given two binary trees*/
Node *MergeTrees(Node * t1, Node * t2)
{
    if (!t1)
        return t2;
    if (!t2)
        return t1;
    t1->data += t2->data;
    t1->left = MergeTrees(t1->left, t2->left);
    t1->right = MergeTrees(t1->right, t2->right);
    return t1;
}
 
// Driver code
int main()
{
    /* Let us construct the first Binary Tree
            1
          /   \
         2     3
        / \     \
       4   5     6
    */
 
    Node *root1 = newNode(1);
    root1->left = newNode(2);
    root1->right = newNode(3);
    root1->left->left = newNode(4);
    root1->left->right = newNode(5);
    root1->right->right = newNode(6);
 
    /* Let us construct the second Binary Tree
           4
         /   \
        1     7
       /     /  \
      3     2    6   */
    Node *root2 = newNode(4);
    root2->left = newNode(1);
    root2->right = newNode(7);
    root2->left->left = newNode(3);
    root2->right->left = newNode(2);
    root2->right->right = newNode(6);
 
    Node *root3 = MergeTrees(root1, root2);
    printf("The Merged Binary Tree is:\n");
    inorder(root3);
    return 0;
}
 
// This code is contributed by Aditya Kumar (adityakumar129)


Java




// Java program to Merge Two Binary Trees
 
/* A binary tree node has data, pointer to left child
   and a pointer to right child */
class Node
{
    int data;
    Node left, right;
     
    public Node(int data, Node left, Node right) {
        this.data = data;
        this.left = left;
        this.right = right;
    }
     
     /* Helper method that allocates a new node with the
     given data and NULL left and right pointers. */
     static Node newNode(int data)
     {
         return new Node(data, null, null);
     }
      
     /* Given a binary tree, print its nodes in inorder*/
     static void inorder(Node node)
     {
         if (node == null)
             return;
       
         /* first recur on left child */
         inorder(node.left);
       
         /* then print the data of node */
         System.out.printf("%d ", node.data);
       
         /* now recur on right child */
         inorder(node.right);
     }
      
     /* Method to merge given two binary trees*/
     static Node MergeTrees(Node t1, Node t2)
     {
         if (t1 == null)
             return t2;
         if (t2 == null)
             return t1;
         t1.data += t2.data;
         t1.left = MergeTrees(t1.left, t2.left);
         t1.right = MergeTrees(t1.right, t2.right);
         return t1;
     }
      
     // Driver method
     public static void main(String[] args)
     {
         /* Let us construct the first Binary Tree
                 1
               /   \
              2     3
             / \     \
            4   5     6
         */
       
         Node root1 = newNode(1);
         root1.left = newNode(2);
         root1.right = newNode(3);
         root1.left.left = newNode(4);
         root1.left.right = newNode(5);
         root1.right.right = newNode(6);
       
         /* Let us construct the second Binary Tree
                4
              /   \
             1     7
            /     /  \
           3     2    6   */
         Node root2 = newNode(4);
         root2.left = newNode(1);
         root2.right = newNode(7);
         root2.left.left = newNode(3);
         root2.right.left = newNode(2);
         root2.right.right = newNode(6);
       
         Node root3 = MergeTrees(root1, root2);
         System.out.printf("The Merged Binary Tree is:\n");
         inorder(root3);
     }
}
// This code is contributed by Gaurav Miglani


Python3




# Python3 program to Merge Two Binary Trees
 
# Helper class that allocates a new node
# with the given data and None left and
# right pointers.
class newNode:
    def __init__(self, data):
        self.data = data
        self.left = self.right = None
 
# Given a binary tree, prints nodes
# in inorder
def inorder(node):
    if (not node):
        return
 
    # first recur on left child
    inorder(node.left)
 
    # then print the data of node
    print(node.data, end = " ")
 
    # now recur on right child
    inorder(node.right)
 
# Function to merge given two
# binary trees
def MergeTrees(t1, t2):
    if (not t1):
        return t2
    if (not t2):
        return t1
    t1.data += t2.data
    t1.left = MergeTrees(t1.left, t2.left)
    t1.right = MergeTrees(t1.right, t2.right)
    return t1
 
# Driver code
if __name__ == '__main__':
     
    # Let us construct the first Binary Tree
    #     1
    #     / \
    #     2     3
    # / \     \
    # 4 5     6
    root1 = newNode(1)
    root1.left = newNode(2)
    root1.right = newNode(3)
    root1.left.left = newNode(4)
    root1.left.right = newNode(5)
    root1.right.right = newNode(6)
 
    # Let us construct the second Binary Tree
    #     4
    #     / \
    # 1     7
    # /     / \
    # 3     2 6
    root2 = newNode(4)
    root2.left = newNode(1)
    root2.right = newNode(7)
    root2.left.left = newNode(3)
    root2.right.left = newNode(2)
    root2.right.right = newNode(6)
 
    root3 = MergeTrees(root1, root2)
    print("The Merged Binary Tree is:")
    inorder(root3)
 
# This code is contributed by PranchalK


C#




// C# program to Merge Two Binary Trees
using System;
 
/* A binary tree node has data, pointer
to left child and a pointer to right child */
public class Node
{
public int data;
public Node left, right;
 
public Node(int data, Node left,
                      Node right)
{
    this.data = data;
    this.left = left;
    this.right = right;
}
 
/* Helper method that allocates a new
node with the given data and NULL left
and right pointers. */
public static Node newNode(int data)
{
    return new Node(data, null, null);
}
 
/* Given a binary tree, print its
   nodes in inorder*/
public static void preorder(Node node)
{
    if (node == null)
    {
        return;
    }
   
    /* then print the data of node */
    Console.Write("{0:D} ", node.data);
 
    /* first recur on left child */
    inorder(node.left);
 
    /* now recur on right child */
    inorder(node.right);
}
 
/* Method to merge given two binary trees*/
public static Node MergeTrees(Node t1, Node t2)
{
    if (t1 == null)
    {
        return t2;
    }
    if (t2 == null)
    {
        return t1;
    }
    t1.data += t2.data;
    t1.left = MergeTrees(t1.left, t2.left);
    t1.right = MergeTrees(t1.right, t2.right);
    return t1;
}
 
// Driver Code
public static void Main(string[] args)
{
    /* Let us construct the first Binary Tree
            1
        / \
        2     3
        / \     \
        4 5     6
    */
 
    Node root1 = newNode(1);
    root1.left = newNode(2);
    root1.right = newNode(3);
    root1.left.left = newNode(4);
    root1.left.right = newNode(5);
    root1.right.right = newNode(6);
 
    /* Let us construct the second Binary Tree
            4
        / \
        1     7
        /     / \
    3     2 6 */
    Node root2 = newNode(4);
    root2.left = newNode(1);
    root2.right = newNode(7);
    root2.left.left = newNode(3);
    root2.right.left = newNode(2);
    root2.right.right = newNode(6);
 
    Node root3 = MergeTrees(root1, root2);
    Console.Write("The Merged Binary Tree is:\n");
    preorder(root3);
}
}
 
// This code is contributed by Shrikant13


Javascript




<script>
 
// Javascript program to Merge Two Binary Trees
class Node
{
    constructor(data)
    {
        this.left = null;
        this.right = null;
        this.data = data;
    }
}
 
// Helper method that allocates a new
// node with the given data and NULL
// left and right pointers.
function newNode(data)
{
    return new Node(data);
}
 
// Given a binary tree, print its
// nodes in inorder
function inorder(node)
{
    if (node == null)
        return;
     
    // First recur on left child
    inorder(node.left);
     
    // Then print the data of node
    document.write(node.data + " ");
     
    // Now recur on right child
    inorder(node.right);
}
   
// Method to merge given two binary trees
function MergeTrees(t1, t2)
{
    if (t1 == null)
        return t2;
    if (t2 == null)
        return t1;
         
    t1.data += t2.data;
    t1.left = MergeTrees(t1.left, t2.left);
    t1.right = MergeTrees(t1.right, t2.right);
    return t1;
}
 
// Driver code
/* Let us construct the first Binary Tree
             1
           /   \
          2     3
         / \     \
        4   5     6
     */
let root1 = newNode(1);
root1.left = newNode(2);
root1.right = newNode(3);
root1.left.left = newNode(4);
root1.left.right = newNode(5);
root1.right.right = newNode(6);
 
/* Let us construct the second Binary Tree
              4
            /   \
           1     7
          /     /  \
         3     2    6   */
let root2 = newNode(4);
root2.left = newNode(1);
root2.right = newNode(7);
root2.left.left = newNode(3);
root2.right.left = newNode(2);
root2.right.right = newNode(6);
 
let root3 = MergeTrees(root1, root2);
document.write("The Merged Binary Tree is:" + "</br>");
inorder(root3);
 
// This code is contributed by divyeshrabadiya07
 
</script>


Output

The Merged Binary Tree is:
7 3 5 5 2 10 12 

Complexity Analysis: 

  • Time complexity : O(n) 
    A total of n nodes need to be traversed. Here, n represents the minimum number of nodes from the two given trees.
  • Auxiliary Space : O(n) 
    The depth of the recursion tree can go upto n in case of a skewed tree. In average case, depth will be O(logn).

Iterative Algorithm:

  1. Create a stack
  2. Push the root nodes of both the trees onto the stack.
  3. While the stack is not empty, perform following steps : 
    1. Pop a node pair from the top of the stack
    2. For every node pair removed, add the values corresponding to the two nodes and update the value of the corresponding node in the first tree
    3. If the left child of the first tree exists, push the left child(pair) of both the trees onto the stack.
    4. If the left child of the first tree doesn’t exist, append the left child of the second tree to the current node of the first tree
    5. Do same for right child pair as well.
    6. If both the current nodes are NULL, continue with popping the next nodes from the stack.
  4. Return root of updated Tree

Implementation:

C++




// C++ program to Merge Two Binary Trees
#include <bits/stdc++.h>
using namespace std;
 
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct Node
{
    int data;
    struct Node *left, *right;
};
 
// Structure to store node pair onto stack
struct snode
{
    Node *l, *r;
};
 
/* Helper function that allocates a new node with the
given data and NULL left and right pointers. */
Node *newNode(int data)
{
    Node *new_node = new Node;
    new_node->data = data;
    new_node->left = new_node->right = NULL;
    return new_node;
}
 
/* Given a binary tree, print its nodes in inorder*/
void inorder(Node * node)
{
    if (! node)
        return;
 
    /* first recur on left child */
    inorder(node->left);
 
    /* then print the data of node */
    printf("%d ", node->data);
 
    /* now recur on right child */
    inorder(node->right);
}
 
/* Function to merge given two binary trees*/
 
Node* MergeTrees(Node* t1, Node* t2)
{
    if (! t1)
        return t2;
    if (! t2)
        return t1;
    stack<snode> s;
    snode temp;
    temp.l = t1;
    temp.r = t2;
    s.push(temp);
    snode n;
    while (! s.empty())
    {
        n = s.top();
        s.pop();
        if (n.l == NULL|| n.r == NULL)
            continue;
        n.l->data += n.r->data;
        if (n.l->left == NULL)
            n.l->left = n.r->left;
        else
        {
            snode t;
            t.l = n.l->left;
            t.r = n.r->left;
            s.push(t);
        }
        if (n.l->right == NULL)
            n.l->right = n.r->right;
        else
        {
            snode t;
            t.l = n.l->right;
            t.r = n.r->right;
            s.push(t);
        }
    }
    return t1;
}
 
// Driver code
int main()
{
    /* Let us construct the first Binary Tree
            1
          /   \
         2     3
        / \     \
       4   5     6
    */
  
    Node *root1 = newNode(1);
    root1->left = newNode(2);
    root1->right = newNode(3);
    root1->left->left = newNode(4);
    root1->left->right = newNode(5);
    root1->right->right = newNode(6);
  
    /* Let us construct the second Binary Tree
           4
         /   \
        1     7
       /     /  \
      3     2    6   */
    Node *root2 = newNode(4);
    root2->left = newNode(1);
    root2->right = newNode(7);
    root2->left->left = newNode(3);
    root2->right->left = newNode(2);
    root2->right->right = newNode(6);
  
    Node *root3 = MergeTrees(root1, root2);
    printf("The Merged Binary Tree is:\n");
    inorder(root3);
    return 0;
}


Java




// Java program to Merge Two Binary Trees
import java.util.*;
 
class GFG{
 
/* A binary tree node has data, pointer to left child
and a pointer to right child */
static class Node
{
    int data;
    Node left, right;
};
 
// Structure to store node pair onto stack
static class snode
{
    Node l, r;
};
 
/* Helper function that allocates a new node with the
given data and null left and right pointers. */
static Node newNode(int data)
{
    Node new_node = new Node();
    new_node.data = data;
    new_node.left = new_node.right = null;
    return new_node;
}
 
/* Given a binary tree, print its nodes in inorder*/
static void inorder(Node  node)
{
    if (node == null)
        return;
 
    /* first recur on left child */
    inorder(node.left);
 
    /* then print the data of node */
    System.out.printf("%d ", node.data);
 
    /* now recur on right child */
    inorder(node.right);
}
 
/* Function to merge given two binary trees*/
 
static Node MergeTrees(Node t1, Node t2)
{
    if ( t1 == null)
        return t2;
    if ( t2 == null)
        return t1;
    Stack<snode> s = new Stack<>();
    snode temp = new snode();
    temp.l = t1;
    temp.r = t2;
    s.add(temp);
    snode n;
    while (! s.isEmpty())
    {
        n = s.peek();
        s.pop();
        if (n.l == null|| n.r == null)
            continue;
        n.l.data += n.r.data;
        if (n.l.left == null)
            n.l.left = n.r.left;
        else
        {
            snode t = new snode();
            t.l = n.l.left;
            t.r = n.r.left;
            s.add(t);
        }
        if (n.l.right == null)
            n.l.right = n.r.right;
        else
        {
            snode t = new snode();
            t.l = n.l.right;
            t.r = n.r.right;
            s.add(t);
        }
    }
    return t1;
}
 
// Driver code
public static void main(String[] args)
{
    /* Let us construct the first Binary Tree
            1
          /   \
         2     3
        / \     \
       4   5     6
    */
  
    Node root1 = newNode(1);
    root1.left = newNode(2);
    root1.right = newNode(3);
    root1.left.left = newNode(4);
    root1.left.right = newNode(5);
    root1.right.right = newNode(6);
  
    /* Let us construct the second Binary Tree
           4
         /   \
        1     7
       /     /  \
      3     2    6   */
    Node root2 = newNode(4);
    root2.left = newNode(1);
    root2.right = newNode(7);
    root2.left.left = newNode(3);
    root2.right.left = newNode(2);
    root2.right.right = newNode(6);
  
    Node root3 = MergeTrees(root1, root2);
    System.out.printf("The Merged Binary Tree is:\n");
    inorder(root3);
}
}
 
// This code is contributed by gauravrajput1


Python3




# Python3 program to Merge Two Binary Trees
  
''' A binary tree node has data, pointer to left child
and a pointer to right child '''
class Node:
     
    def __init__(self, data):
         
        self.data = data
        self.left = None
        self.right = None
         
# Structure to store node pair onto stack
class snode:
     
    def __init__(self, l, r):
         
        self.l = l
        self.r = r
  
''' Helper function that allocates a new node with the
given data and None left and right pointers. '''
def newNode(data):
 
    new_node = Node(data)
    return new_node
     
''' Given a binary tree, print its nodes in inorder'''
def inorder(node):
 
    if (not node):
        return;
  
    ''' first recur on left child '''
    inorder(node.left);
  
    ''' then print the data of node '''
    print(node.data, end=' ');
  
    ''' now recur on right child '''
    inorder(node.right);
  
''' Function to merge given two binary trees'''
  
def MergeTrees(t1, t2):
 
    if (not t1):
        return t2;
    if (not t2):
        return t1;
    s = []
     
    temp = snode(t1, t2)
     
    s.append(temp);
    n = None
     
    while (len(s) != 0):
     
        n = s[-1]
        s.pop();
         
        if (n.l == None or n.r == None):
            continue;
             
        n.l.data += n.r.data;
        if (n.l.left == None):
            n.l.left = n.r.left;
        else:
            t=snode(n.l.left, n.r.left)
            s.append(t);
         
        if (n.l.right == None):
            n.l.right = n.r.right;
        else:
 
            t=snode(n.l.right, n.r.right)
            s.append(t);
         
    return t1;
  
# Driver code
if __name__=='__main__':
     
    ''' Let us construct the first Binary Tree
            1
          /   \
         2     3
        / \     \
       4   5     6
    '''
   
    root1 = newNode(1);
    root1.left = newNode(2);
    root1.right = newNode(3);
    root1.left.left = newNode(4);
    root1.left.right = newNode(5);
    root1.right.right = newNode(6);
   
    ''' Let us construct the second Binary Tree
           4
         /   \
        1     7
       /     /  \
      3     2    6   '''
     
    root2 = newNode(4);
    root2.left = newNode(1);
    root2.right = newNode(7);
    root2.left.left = newNode(3);
    root2.right.left = newNode(2);
    root2.right.right = newNode(6);
   
    root3 = MergeTrees(root1, root2);
    print("The Merged Binary Tree is:");
    inorder(root3);
     
# This code is contributed by rutvik76


C#




// C# program to Merge Two Binary Trees
using System;
using System.Collections.Generic;
 
class GFG{
 
// A binary tree node has data, pointer
// to left child and a pointer to right
// child
public class Node
{
    public int data;
    public Node left, right;
};
 
// Structure to store node pair onto stack
public class snode
{
    public Node l, r;
};
 
// Helper function that allocates a new
// node with the given data and null
// left and right pointers.
static Node newNode(int data)
{
    Node new_node = new Node();
    new_node.data = data;
    new_node.left = new_node.right = null;
    return new_node;
}
 
// Given a binary tree, print its
// nodes in inorder
static void inorder(Node  node)
{
    if (node == null)
        return;
 
    // First recur on left child
    inorder(node.left);
 
    // Then print the data of node
    Console.Write(node.data + " ");
 
    // Now recur on right child
    inorder(node.right);
}
 
// Function to merge given two binary trees
static Node MergeTrees(Node t1, Node t2)
{
    if ( t1 == null)
        return t2;
    if ( t2 == null)
        return t1;
         
    Stack<snode> s = new Stack<snode>();
    snode temp = new snode();
    temp.l = t1;
    temp.r = t2;
    s.Push(temp);
    snode n;
     
    while (s.Count != 0)
    {
        n = s.Peek();
        s.Pop();
         
        if (n.l == null|| n.r == null)
            continue;
             
        n.l.data += n.r.data;
         
        if (n.l.left == null)
            n.l.left = n.r.left;
        else
        {
            snode t = new snode();
            t.l = n.l.left;
            t.r = n.r.left;
            s.Push(t);
        }
         
        if (n.l.right == null)
            n.l.right = n.r.right;
        else
        {
            snode t = new snode();
            t.l = n.l.right;
            t.r = n.r.right;
            s.Push(t);
        }
    }
    return t1;
}
 
// Driver code
public static void Main(String[] args)
{
    /* Let us construct the first Binary Tree
            1
          /   \
         2     3
        / \     \
       4   5     6
    */
    Node root1 = newNode(1);
    root1.left = newNode(2);
    root1.right = newNode(3);
    root1.left.left = newNode(4);
    root1.left.right = newNode(5);
    root1.right.right = newNode(6);
  
    /* Let us construct the second Binary Tree
           4
         /   \
        1     7
       /     /  \
      3     2    6   */
    Node root2 = newNode(4);
    root2.left = newNode(1);
    root2.right = newNode(7);
    root2.left.left = newNode(3);
    root2.right.left = newNode(2);
    root2.right.right = newNode(6);
  
    Node root3 = MergeTrees(root1, root2);
     
    Console.Write("The Merged Binary Tree is:\n");
     
    inorder(root3);
}
}
 
// This code is contributed by aashish1995


Javascript




<script>
  
// JavaScript program to Merge Two Binary Trees
  
/* A binary tree node has data, pointer to left child
and a pointer to right child */
class Node
{
    constructor()
    {
        this.data=0;
        this.left=this.right=null;
    }
}
  
  
// Structure to store node pair onto stack
class snode
{
    constructor()
    {
        this.l=null;
        this.r=null;
    }
}
  
/* Helper function that allocates a new node with the
given data and null left and right pointers. */
function newNode(data)
{
    let new_node = new Node();
    new_node.data = data;
    new_node.left = new_node.right = null;
    return new_node;
}
  
/* Given a binary tree, print its nodes in inorder*/
function inorder(node)
{
    if (node == null)
        return;
   
    /* first recur on left child */
    inorder(node.left);
   
    /* then print the data of node */
    document.write(node.data+" ");
   
    /* now recur on right child */
    inorder(node.right);
}
  
/* Function to merge given two binary trees*/
function MergeTrees(t1,t2)
{
    if ( t1 == null)
        return t2;
    if ( t2 == null)
        return t1;
    let s = [];
    let temp = new snode();
    temp.l = t1;
    temp.r = t2;
    s.push(temp);
    let n;
    while ( s.length!=0)
    {
        n = s.pop();
          
        if (n.l == null|| n.r == null)
            continue;
        n.l.data += n.r.data;
        if (n.l.left == null)
            n.l.left = n.r.left;
        else
        {
            let t = new snode();
            t.l = n.l.left;
            t.r = n.r.left;
            s.push(t);
        }
        if (n.l.right == null)
            n.l.right = n.r.right;
        else
        {
            let t = new snode();
            t.l = n.l.right;
            t.r = n.r.right;
            s.push(t);
        }
    }
    return t1;
}
  
// Driver code
/* Let us construct the first Binary Tree
            1
          /   \
         2     3
        / \     \
       4   5     6
    */
  
let root1 = newNode(1);
root1.left = newNode(2);
root1.right = newNode(3);
root1.left.left = newNode(4);
root1.left.right = newNode(5);
root1.right.right = newNode(6);
  
/* Let us construct second Binary Tree
           4
         /   \
        1     7
       /     /  \
      3     2    6   */
let root2 = newNode(4);
root2.left = newNode(1);
root2.right = newNode(7);
root2.left.left = newNode(3);
root2.right.left = newNode(2);
root2.right.right = newNode(6);
  
let root3 = MergeTrees(root1, root2);
document.write("The Merged Binary Tree is:<br>");
inorder(root3);
  
  
// This code is contributed by unknown2108
  
</script>


Output

The Merged Binary Tree is:
7 3 5 5 2 10 12 

Complexity Analysis:  

  • Time complexity : O(n) 
    A total of n nodes need to be traversed. Here, n represents the minimum number of nodes from the two given trees.
  • Auxiliary Space : O(n) 
    The depth of the stack can go upto n in case of a skewed tree.

 



Previous Article
Next Article

Similar Reads

Iterative Approach to check if two Binary Trees are Isomorphic or not
Given two Binary Trees we have to detect if the two trees are Isomorphic. Two trees are called isomorphic if one of them can be obtained from another by a series of flips, i.e. by swapping left and right children of a number of nodes. Any number of nodes at any level can have their children swapped. Note: Two empty trees are isomorphic. For example
12 min read
Count half nodes in a Binary tree (Iterative and Recursive)
Given A binary Tree, how do you count all the half nodes (which has only one child) without using recursion? Note leaves should not be touched as they have both children as NULL. Input : Root of below treeOutput : 3 Nodes 7, 5 and 9 are half nodes as one of their child is Null. So count of half nodes in the above tree is 3 Iterative The idea is to
12 min read
Count full nodes in a Binary tree (Iterative and Recursive)
Given A binary Tree, how do you count all the full nodes (Nodes which have both children as not NULL) without using recursion and with recursion? Note leaves should not be touched as they have both children as NULL. Nodes 2 and 6 are full nodes has both child's. So count of full nodes in the above tree is 2 Method: Iterative The idea is to use leve
12 min read
Binary Search Algorithm - Iterative and Recursive Implementation
Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N).  What is Binary Search Algorithm?Binary search is a search algorithm used to find the position of a targe
15+ min read
Total number of possible Binary Search Trees and Binary Trees with n keys
Total number of possible Binary Search Trees with n different keys (countBST(n)) = Catalan number Cn = (2n)! / ((n + 1)! * n!) For n = 0, 1, 2, 3, … values of Catalan numbers are 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, .... So are numbers of Binary Search Trees. Total number of possible Binary Trees with n different keys (countBT(n)) = countBST(n
12 min read
Check if two Binary Strings can be made equal by doing bitwise XOR of adjacent
Given binary strings S1 and S2 of length N, the task is to check if S2 can be made equal to S1 by performing the following operations on S2: The first operation is Si = Si ? Si+1. ( ? is the XOR operation)The second operation is Si+1 = Si+1 ? Si. Examples: Input: S1 = "00100", S2 = "00011" Output: Yes ?Explanation: We can apply the following operat
6 min read
Merge Two Balanced Binary Search Trees
You are given two balanced binary search trees e.g., AVL or Red-Black Tree. Write a function that merges the two given balanced BSTs into a balanced binary search tree. Let there be m elements in the first tree and n elements in the other tree. Your merge function should take O(m+n) time.In the following solutions, it is assumed that the sizes of t
15+ min read
Iterative function to check if two trees are identical
Two trees are identical when they have same data and arrangement of data is also same. To identify if two trees are identical, we need to traverse both trees simultaneously, and while traversing we need to compare data and children of the trees. Examples: Input : Roots of below trees 10 10 / \ / 5 6 5 Output : falseInput : Roots of below trees 10 1
15+ min read
Iterative method to check if two trees are mirror of each other
Given two binary trees. The problem is to check whether the two binary trees are mirrors of each other or not. Mirror of a Binary Tree: Mirror of a Binary Tree T is another Binary Tree M(T) with left and right children of all non-leaf nodes interchanged. Trees in the above figure are mirrors of each other. Recommended PracticeTwo Mirror TreesTry It
11 min read
Count consonants in a string (Iterative and recursive methods)
Given a string, count total number of consonants in it. A consonant is an English alphabet character that is not vowel (a, e, i, o and u). Examples of constants are b, c, d, f, and g. Examples : Input : abc de Output : 3 There are three consonants b, c and d. Input : geeksforgeeks portal Output : 12 1. Iterative Method C/C++ Code // Iterative CPP p
7 min read
Article Tags :
Practice Tags :