Open In App

Introduction to the Probabilistic Data Structure

Last Updated : 16 Feb, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

Introduction:
 

Probabilistic Data Structures are data structures that provide approximate answers to queries about a large dataset, rather than exact answers. These data structures are designed to handle large amounts of data in real-time, by making trade-offs between accuracy and time and space efficiency.

Some common examples of Probabilistic Data Structures are:

  1. Bloom filters: A probabilistic data structure used to test if an element is a member of a set.
  2. Count-Min Sketch: A probabilistic data structure used to estimate the frequency of elements in a dataset.
  3. HyperLogLog: A probabilistic data structure used to estimate the number of distinct elements in a dataset.
  4. These data structures work by using randomization and hashing to provide approximate answers to queries, while using limited space and computation. Probabilistic data structures are widely used in various applications, such as network security, database management, and data analytics.

The key advantage of probabilistic data structures is their ability to handle large amounts of data in real-time, by providing approximate answers to queries with limited space and computation. However, their accuracy is not guaranteed, and the trade-off between accuracy and efficiency must be carefully considered when choosing a probabilistic data structure for a specific use case.

Based on different properties such as speed, cost, and ease of use(as a developer), etc. the below information represents different ways of storing stuff in the computer machine.

Tape------->HDD------->SSD------->Memory

It means memory is faster than SSD than HDD than Tape and the same goes with cost and ease of use as a developer.

Storage and its limitations

Now let’s discuss the scenario with the context of the developer. If we want to store some stuff in memory then we may use Set(of course one can use other in-memory data structure as well like Arrays, List, Map, etc) and if we want to store some data on SSD then we may use something like a relational database or elastic search. Similarly for a hard drive(HDD) we can use Hadoop(HDFS). Now suppose we want to store data in memory using deterministic in-memory data structure but the problem is the amount of memory we have on servers in terms of GB or TB for memory is less than SSD and SSD might have memory lesser than a hard drive(HDD), and also one should remember than deterministic data structure is good and popular to use but these data structures are not efficient in term of consuming memory.

HDD<-------SSD<-------Memory   //Storage per node

Now the question is how can we do more stuff at the memory side, with less amount of memory consumption?

HDD-------SSD-------Memory
                      ^
                      |
              How can we do more stuff here? 

Thus this is the place where probabilistic data structure comes into the picture which can do almost the same job as a deterministic data structure but with a lot less memory.

Deterministic Vs Probabilistic Data Structure

Being an IT professional, we might have come across many deterministic data structures such as Array, List, Set, HashTable, HashSet, etc. These in-memory data structures are the most typical data structures on which various operations such as insert, find and delete could be performed with specific key values. As a result of operation what we get is the deterministic(accurate) result. But this is not in the case of a probabilistic data structure, Here the result of operation could be probabilistic(may not give you a definite answer, always results in approximate), and hence named as a probabilistic data structure. We will see and prove this in the coming sections. But for now let’s dig into more detail of its definition, types, and uses. How does it work? Probabilistic data structure works with large data set, where we want to perform some operations such as finding some unique items in given data set or it could be finding the most frequent item or if some items exist or not. To do such an operation probabilistic data structure uses more and more hash functions to randomize and represent a set of data.

The more number of hash function the more accurate result. 

Things to remember A deterministic data structure can also perform all the operations that a probabilistic data structure does but only with low data sets. As stated earlier, if the data set is too big and couldn’t fit into the memory, then the deterministic data structure fails and is simply not feasible. Also in case of a streaming application where data is required to be processed in one go and perform incremental updates, it is very difficult to manage with the deterministic data structure. Use Cases

  1. Analyze big data set
  2. Statistical analysis
  3. Mining tera-bytes of data sets, etc

Popular probabilistic data structures

  1. Bloom filter
  2. Count-Min Sketch
  3. HyperLogLog

Advantages of Introduction to the Probabilistic Data Structure:

Advantages of Probabilistic Data Structures are:

  1. Scalability: Probabilistic data structures can handle large amounts of data, making them suitable for use in big data applications.
  2. Space efficiency: Probabilistic data structures are designed to use limited space, making them more memory efficient than traditional data structures.
  3. Real-time performance: Probabilistic data structures are designed to provide approximate answers to queries in real-time, making them suitable for use in real-time applications.
  4. Reduced computation: Probabilistic data structures use hashing and randomization to provide approximate answers, reducing the computation required compared to exact algorithms.
  5. Simplicity: Probabilistic data structures are relatively simple to implement, making them accessible to a wide range of developers and use cases.
  6. Trade-off between accuracy and efficiency: Probabilistic data structures provide a trade-off between accuracy and efficiency, allowing for a balance between the two that can be tailored to a specific use case.

Overall, probabilistic data structures provide a powerful tool for handling large amounts of data in real-time, making them a popular choice for a wide range of applications.


Similar Reads

Introduction of Probabilistic Computing
Probabilistic computing is a field of computer science and artificial intelligence that focuses on the study and implementation of probabilistic algorithms, models, and methods for computation. It aims to build systems that can reason about and handle uncertainty, making probabilistic predictions about the world and making decisions based on those
5 min read
Probabilistic shortest path routing algorithm for optical networks
Data transfer operations is a crucial aspect in case of networking and routing. So efficient data transfer operations is a must need, with minimum hardware cost (Optical Cables, WDM Network components, Decoders, Multiplexers) and also in the minimum time possible. Thus, the need is to propose an algorithm that finds the shortest path between two no
5 min read
Static Data Structure vs Dynamic Data Structure
Data structure is a way of storing and organizing data efficiently such that the required operations on them can be performed be efficient with respect to time as well as memory. Simply, Data Structure are used to reduce complexity (mostly the time complexity) of the code. Data structures can be two types : 1. Static Data Structure 2. Dynamic Data
4 min read
Introduction to Universal Hashing in Data Structure
Universal hashing is a technique used in computer science and information theory for designing hash functions. It is a family of hash functions that can be efficiently computed by using a randomly selected hash function from a set of hash functions. The goal of universal hashing is to minimize the chance of collisions between distinct keys, which c
5 min read
Introduction to Hierarchical Data Structure
We have discussed Overview of Array, Linked List, Queue and Stack. In this article following Data Structures are discussed. 5. Binary Tree 6. Binary Search Tree 7. Binary Heap 8. Hashing Binary Tree Unlike Arrays, Linked Lists, Stack, and queues, which are linear data structures, trees are hierarchical data structures. A binary tree is a tree data
13 min read
Introduction to Augmented Data Structure
Data Structures play a significant role in building software and applications but many a times all our requirements are not satisfied using an existing data structure. This is when we modify an existing data structure according to our needs. This article will provide a brief introduction about when and how to Augment a Data Structure. Table of Cont
10 min read
Introduction to Splay tree data structure
Splay tree is a self-adjusting binary search tree data structure, which means that the tree structure is adjusted dynamically based on the accessed or inserted elements. In other words, the tree automatically reorganizes itself so that frequently accessed or inserted elements become closer to the root node. The splay tree was first introduced by Da
15+ min read
Introduction to Matrix or Grid Data Structure - Two Dimensional Array
Matrix or Grid is a two-dimensional array mostly used in mathematical and scientific calculations. It is also considered as an array of arrays, where array at each index has the same size. In this article, we will cover all the basics of Matrix, the Operations on Matrix, its implementation, advantages, disadvantages which will help you solve all th
14 min read
Introduction to Finger search tree Data Structure
A finger search tree is a data structure that is designed to allow for efficient search and access of data in a set or a sequence. It is a type of binary search tree that uses a "finger" or a reference to a particular element in the tree to quickly find and retrieve other elements. In this article, we will explore the types, advantages, disadvantag
15+ min read
Introduction to Graph Data Structure
Graph Data Structure is a non-linear data structure consisting of vertices and edges. It is useful in fields such as social network analysis, recommendation systems, and computer networks. In the field of sports data science, graph data structure can be used to analyze and understand the dynamics of team performance and player interactions on the f
15+ min read