Open In App

Introduction to Augmented Data Structure

Last Updated : 15 Feb, 2024
Improve
Improve
Like Article
Like
Save
Share
Report

Data Structures play a significant role in building software and applications but many a times all our requirements are not satisfied using an existing data structure. This is when we modify an existing data structure according to our needs. This article will provide a brief introduction about when and how to Augment a Data Structure.

What is an Augmented Data Structure?

Augmenting a Data Structure (or Augmented Data Structure) means adapting an existing data structure to our needs. This allows us to take advantage of an original data structure that solves our problem partially and make changes such that it fits to our problem completely.

Examples of Augmenting a Data Structure:

There are many examples of augmenting data structures, and augmenting is simply changing the existing data structure to solve our problem.

  1. Augmented Queue for Maximum Element: In an augmented queue, each element not only stores its value but also maintains information about the maximum element in the current queue up to that point.
  2. Augmented Trie for Prefix Sums: Consider a trie (prefix tree) data structure where each node stores the sum of values of all elements with the same prefix up to that node.
  3. Augmented AVL Tree for Rank Queries: In an AVL tree (a self-balancing binary search tree), each node can store the rank of that node in the tree, i.e., the number of nodes in its left subtree plus one.
  4. Augmented Disjoint Set (Union-Find) for Set Size: In a disjoint set data structure, each set representative (root) could store the size of its corresponding set.

Prerequisites for Augmenting a Data Structure:

Augmenting a data structure involve adding new information or functionality to an existing data structure in order to improve its capabilities. While this can be a useful technique for improving an algorithm’s performance or functionality, it is critical to carefully consider the implications of augmenting a data structure before doing so. Here are some important considerations:

  1. Determine what additional information or functionality is required: Define precisely what information or functionality you want to add to the data structure. This could imply storing more data, keeping auxiliary information, or enabling new operations.
  2. Impact on performance and complexity: Augmentation may result in additional time and space complexity. Examine how the proposed augmentation will affect the operation of the data structure. Ensure that the benefits outweigh the performance costs.
  3. Consistency: The augmented data structure must be consistent with the original data structure. This means that the augmentation should not violate any of the original structure’s invariants or properties.
  4. Compatibility with existing code: If the data structure is already used in existing code, make sure that the augmentation does not break compatibility. Consider whether backward compatibility or migration strategies are required.
  5. Test and validate: The augmented data structure should be tested thoroughly to ensure its correctness, efficiency, and compatibility with existing code. Verify that the augmentation results in the desired performance or functionality improvements.

How to Augment a Data Structure?

The process of augmenting a data structure are as follows:

1. Define the Need:

  • Identify the problem: Clearly define the problem you want the augmented structure to solve. What specific inefficiency or limitation are we addressing?
  • Justify the augmentation: Is augmentation the most effective solution? Can simpler optimizations achieve the desired results?

2. Choose the Underlying Structure:

  • Select the appropriate data structure: Consider the existing structure’s strengths and weaknesses. Can it efficiently support the augmentation you want to implement?
  • Evaluate compatibility: Ensure the chosen structure allows efficient updates and maintenance of the added information during its basic operations (insertion, deletion, search, etc.).

3. Design the Augmentation:

  • Define the data storage: Decide how the added information will be stored within the existing structure. Will it be part of each element, attached to nodes, or stored separately?
  • Update operations: Modify existing operations (insertion, deletion, search, etc.) to incorporate the added information and ensure its consistency.

4. Implement and Test:

  • Code the augmentation: Implement the designed modifications carefully, focusing on clarity, efficiency, and maintainability.
  • Thorough testing: Test the augmented structure extensively for functionality, performance, and data integrity across various scenarios.
  • Document and share: Document your design decisions, rationale, and limitations for future reference and to facilitate collaboration.

A Problem using Augmentation of Data Structure:

Given a set of integers, the task is to design a data structure that supports two operations efficiently:

  1. Insertion: Insert an integer into the data structure.
  2. Query: Given an integer k, find the number of elements in the data structure that are less than or equal to k.

Naive Approach: A simple way to solve this problem is to use an array or a list to store the integers. For insertion, you can just append the integer to the end of the list. For the query operation, iterate through the list and count the elements less than or equal to k. This approach takes linear time for the query operation.

Augmenting the Data Structure: To improve the efficiency of the query operation, we can augment the data structure with additional information. One way to do this is by maintaining a sorted order of elements. This can be achieved using a balanced Binary Search Tree (BST).

Structure of Augmented Tree: Each node in the BST should store the value of the element, the size of the subtree rooted at that node, and pointers to the left and right children.

  1. Insertion:
    • Insert the element into the BST as you normally would.
    • While inserting, update the size of each visited node.
  2. Query:
    • Start at the root of the BST.
    • Traverse the tree:
      • If the current node’s value is less than or equal to k, add the size of its left subtree (including itself) to the count.
      • Move to the left or right child accordingly.

Implementation of above algorithm is given below:

C++




// C++ Implementation
 
#include <iostream>
 
// Class to define node for the Augmented BST
class AugmentedBSTNode {
public:
    int value;
    int size;
    AugmentedBSTNode* left;
    AugmentedBSTNode* right;
 
    AugmentedBSTNode(int value) {
        this->value = value;
        this->size = 1;
        this->left = nullptr;
        this->right = nullptr;
    }
};
 
// Class to define the augmented BST with the operations
class AugmentedBST {
private:
    AugmentedBSTNode* root;
 
    // Method to insert a value in the BST
    AugmentedBSTNode* _insert(AugmentedBSTNode* node, int value) {
        if (node == nullptr) {
            return new AugmentedBSTNode(value);
        }
        node->size++;
        if (value <= node->value) {
            node->left = _insert(node->left, value);
        } else {
            node->right = _insert(node->right, value);
        }
        return node;
    }
 
    // Helper Method to query in the BST
    int _query(AugmentedBSTNode* node, int k) {
        if (node == nullptr) {
            return 0;
        }
        if (node->value <= k) {
            return (node->left != nullptr ? node->left->size : 0) + 1 + _query(node->right, k);
        } else {
            return _query(node->left, k);
        }
    }
 
public:
    AugmentedBST() {
        this->root = nullptr;
    }
 
    void insert(int value) {
        root = _insert(root, value);
    }
 
    int query(int k) {
        return _query(root, k);
    }
};
 
// Driver Code
int main() {
    AugmentedBST augmentedDS;
    augmentedDS.insert(5);
    augmentedDS.insert(2);
    augmentedDS.insert(8);
    augmentedDS.insert(1);
 
    int result = augmentedDS.query(6);
    std::cout << result << std::endl;
 
    return 0;
}
 
// This code is contributed by Tapesh(tapeshdu420)


Java




// Class to define node for the Augmented BST
class AugmentedBSTNode {
    int value;
    int size;
    AugmentedBSTNode left;
    AugmentedBSTNode right;
 
    public AugmentedBSTNode(int value) {
        this.value = value;
        this.size = 1;
        this.left = null;
        this.right = null;
    }
}
 
// Class to define the augmented BST with the operations
class AugmentedBST {
    private AugmentedBSTNode root;
 
    // Method to insert a value in the BST
    public void insert(int value) {
        root = _insert(root, value);
    }
 
    // Helper Method to insert a node in the Augmented BST
    private AugmentedBSTNode _insert(AugmentedBSTNode node, int value) {
        if (node == null) {
            return new AugmentedBSTNode(value);
        }
        node.size++;
        if (value <= node.value) {
            node.left = _insert(node.left, value);
        } else {
            node.right = _insert(node.right, value);
        }
        return node;
    }
 
    // Method to query in the BST
    public int query(int k) {
        return _query(root, k);
    }
 
    // Helper Method to query in the BST
    private int _query(AugmentedBSTNode node, int k) {
        if (node == null) {
            return 0;
        }
        if (node.value <= k) {
            return (node.left != null ? node.left.size : 0) + 1 + _query(node.right, k);
        } else {
            return _query(node.left, k);
        }
    }
}
 
// Driver Code
public class Main {
    public static void main(String[] args) {
        AugmentedBST augmentedDS = new AugmentedBST();
        augmentedDS.insert(5);
        augmentedDS.insert(2);
        augmentedDS.insert(8);
        augmentedDS.insert(1);
 
        int result = augmentedDS.query(6);
        System.out.println(result);
    }
}


Python




# class to define node for the Augmented BST
class AugmentedBSTNode:
    def __init__(self, value):
        self.value = value
        self.size = 1
        self.left = None
        self.right = None
 
# class to define the augmented BST with the operations
class AugmentedBST:
    def __init__(self):
        self.root = None
 
    # Method to insert a value in the BST
    def insert(self, value):
        self.root = self._insert(self.root, value)
 
    # Helper Method to insert a node in the Augmented BST
    def _insert(self, node, value):
        if not node:
            return AugmentedBSTNode(value)
        node.size += 1
        if value <= node.value:
            node.left = self._insert(node.left, value)
        else:
            node.right = self._insert(node.right, value)
        return node
 
    # Method to query in the BST
    def query(self, k):
        return self._query(self.root, k)
 
    # Helper Method to query in the BST
    def _query(self, node, k):
        if not node:
            return 0
        if node.value <= k:
            return (node.left.size if node.left else 0) + 1 + self._query(node.right, k)
        else:
            return self._query(node.left, k)
 
 
# Example usage:
augmented_ds = AugmentedBST()
augmented_ds.insert(5)
augmented_ds.insert(2)
augmented_ds.insert(8)
augmented_ds.insert(1)
 
result = augmented_ds.query(6)
print(result)


C#




using System;
 
// Class to define node for the Augmented BST
class AugmentedBSTNode
{
    public int value;
    public int size;
    public AugmentedBSTNode left;
    public AugmentedBSTNode right;
 
    public AugmentedBSTNode(int value)
    {
        this.value = value;
        this.size = 1;
        this.left = null;
        this.right = null;
    }
}
 
// Class to define the augmented BST with the operations
class AugmentedBST
{
    private AugmentedBSTNode root;
 
    // Method to insert a value in the BST
    private AugmentedBSTNode Insert(AugmentedBSTNode node, int value)
    {
        if (node == null)
        {
            return new AugmentedBSTNode(value);
        }
        node.size++;
        if (value <= node.value)
        {
            node.left = Insert(node.left, value);
        }
        else
        {
            node.right = Insert(node.right, value);
        }
        return node;
    }
 
    // Helper Method to query in the BST
    private int Query(AugmentedBSTNode node, int k)
    {
        if (node == null)
        {
            return 0;
        }
        if (node.value <= k)
        {
            return (node.left != null ? node.left.size : 0) + 1 + Query(node.right, k);
        }
        else
        {
            return Query(node.left, k);
        }
    }
 
    public AugmentedBST()
    {
        this.root = null;
    }
 
    public void Insert(int value)
    {
        root = Insert(root, value);
    }
 
    public int Query(int k)
    {
        return Query(root, k);
    }
}
 
// Driver Code
class Program
{
    static void Main()
    {
        AugmentedBST augmentedDS = new AugmentedBST();
        augmentedDS.Insert(5);
        augmentedDS.Insert(2);
        augmentedDS.Insert(8);
        augmentedDS.Insert(1);
 
        int result = augmentedDS.Query(6);
        Console.WriteLine(result);
    }
}


Javascript




// Class to define node for the Augmented BST
class AugmentedBSTNode {
    constructor(value) {
        this.value = value;
        this.size = 1;
        this.left = null;
        this.right = null;
    }
}
 
// Class to define the augmented BST with operations
class AugmentedBST {
    constructor() {
        this.root = null;
    }
 
    // Method to insert a value in the BST
    insert(value) {
        this.root = this._insert(this.root, value);
    }
 
    // Helper Method to insert a node in the Augmented BST
    _insert(node, value) {
        if (node === null) {
            return new AugmentedBSTNode(value);
        }
        node.size++;
        if (value <= node.value) {
            node.left = this._insert(node.left, value);
        } else {
            node.right = this._insert(node.right, value);
        }
        return node;
    }
 
    // Method to query in the BST
    query(k) {
        return this._query(this.root, k);
    }
 
    // Helper Method to query in the BST
    _query(node, k) {
        if (node === null) {
            return 0;
        }
        if (node.value <= k) {
            return (node.left !== null ? node.left.size : 0) + 1 + this._query(node.right, k);
        } else {
            return this._query(node.left, k);
        }
    }
}
 
// Driver Code
const augmentedDS = new AugmentedBST();
augmentedDS.insert(5);
augmentedDS.insert(2);
augmentedDS.insert(8);
augmentedDS.insert(1);
 
const result = augmentedDS.query(6);
console.log(result);


Output

3


Time Complexity: O(Q * log(N)), where Q is the number of queries and N is the number of nodes in the BST. After Augmenting the BST, each query can be answered in O(logN) time.
Auxiliary Space: O(N)



Similar Reads

Static Data Structure vs Dynamic Data Structure
Data structure is a way of storing and organizing data efficiently such that the required operations on them can be performed be efficient with respect to time as well as memory. Simply, Data Structure are used to reduce complexity (mostly the time complexity) of the code. Data structures can be two types : 1. Static Data Structure 2. Dynamic Data
4 min read
Introduction to the Probabilistic Data Structure
Introduction: Probabilistic Data Structures are data structures that provide approximate answers to queries about a large dataset, rather than exact answers. These data structures are designed to handle large amounts of data in real-time, by making trade-offs between accuracy and time and space efficiency. Some common examples of Probabilistic Data
5 min read
Introduction to Universal Hashing in Data Structure
Universal hashing is a technique used in computer science and information theory for designing hash functions. It is a family of hash functions that can be efficiently computed by using a randomly selected hash function from a set of hash functions. The goal of universal hashing is to minimize the chance of collisions between distinct keys, which c
5 min read
Introduction to Hierarchical Data Structure
We have discussed Overview of Array, Linked List, Queue and Stack. In this article following Data Structures are discussed. 5. Binary Tree 6. Binary Search Tree 7. Binary Heap 8. Hashing Binary Tree Unlike Arrays, Linked Lists, Stack, and queues, which are linear data structures, trees are hierarchical data structures. A binary tree is a tree data
13 min read
Introduction to Splay tree data structure
Splay tree is a self-adjusting binary search tree data structure, which means that the tree structure is adjusted dynamically based on the accessed or inserted elements. In other words, the tree automatically reorganizes itself so that frequently accessed or inserted elements become closer to the root node. The splay tree was first introduced by Da
15+ min read
Introduction to Matrix or Grid Data Structure - Two Dimensional Array
Matrix or Grid is a two-dimensional array mostly used in mathematical and scientific calculations. It is also considered as an array of arrays, where array at each index has the same size. In this article, we will cover all the basics of Matrix, the Operations on Matrix, its implementation, advantages, disadvantages which will help you solve all th
14 min read
Introduction to Finger search tree Data Structure
A finger search tree is a data structure that is designed to allow for efficient search and access of data in a set or a sequence. It is a type of binary search tree that uses a "finger" or a reference to a particular element in the tree to quickly find and retrieve other elements. In this article, we will explore the types, advantages, disadvantag
15+ min read
Introduction to Graph Data Structure
Graph Data Structure is a non-linear data structure consisting of vertices and edges. It is useful in fields such as social network analysis, recommendation systems, and computer networks. In the field of sports data science, graph data structure can be used to analyze and understand the dynamics of team performance and player interactions on the f
15+ min read
Introduction to Tree Data Structure
Tree data structure is a specialized data structure to store data in hierarchical manner. It is used to organize and store data in the computer to be used more effectively. It consists of a central node, structural nodes, and sub-nodes, which are connected via edges. We can also say that tree data structure has roots, branches, and leaves connected
15+ min read
Is array a Data Type or Data Structure?
What is Data Type? In computer programming, a data type is a classification of data that determines the type of values that can be stored, manipulated, and processed. It tells the computer what kind of data a particular variable or constant can hold, and what operations can be performed on that data. Common data types include integers, floating-poi
8 min read