Open In App

Add and Remove vertex in Adjacency Matrix representation of Graph

Last Updated : 14 Mar, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

A graph is a presentation of a set of entities where some pairs of entities are linked by a connection. Interconnected entities are represented by points referred to as vertices, and the connections between the vertices are termed as edges. Formally, a graph is a pair of sets (V, E), where V is a collection of vertices, and E is a collection of edges joining a pair of vertices. 

A graph can be represented by using an Adjacency Matrix. 

Initialization of Graph: The adjacency matrix will be depicted using a 2D array, a constructor will be used to assign the size of the array and each element of that array will be initialized to 0. Showing that the degree of each vertex in the graph is zero.

C++




class Graph {
private:
    // number of vertices
    int n;
 
    // adjacency matrix
    int g[10][10];
 
public:
    // constructor
    Graph(int x)
    {
        n = x;
 
        // initializing each element of the adjacency matrix to zero
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < n; ++j) {
                g[i][j] = 0;
            }
        }
    }
};


Java




class Graph {
    // number of vertices
    private int n;
 
    // adjacency matrix
    private int[][] g = new int[10][10];
 
    // constructor
    Graph(int x)
    {
        this.n = x;
        int i, j;
 
        // initializing each element of the adjacency matrix to zero
        for (i = 0; i < n; ++i) {
            for (j = 0; j < n; ++j) {
                g[i][j] = 0;
            }
        }
    }
}


Python3




class Graph:
     # number of vertices
     __n = 0
 
     # adjacency matrix
     __g =[[0 for x in range(10)] for y in range(10)]
      
     # constructor
     def __init__(self, x):
        self.__n = x
 
        # initializing each element of the adjacency matrix to zero
        for i in range(0, self.__n):
            for j in range(0, self.__n):
                self.__g[i][j]= 0


C#




class Graph{
     
// Number of vertices
private int n;
 
// Adjacency matrix
private int[,] g = new int[10, 10];
 
// Constructor
Graph(int x)
{
    this.n = x;
    int i, j;
 
    // Initializing each element of
    // the adjacency matrix to zero
    for(i = 0; i < n; ++i)
    {
        for(j = 0; j < n; ++j)
        {
            g[i, j] = 0;
        }
    }
}
}
 
// This code is contributed by ukasp


Javascript




class Graph {
    constructor(x) {
        // number of vertices
        this.n = x;
 
        // adjacency matrix
        this.g = [];
 
        // initializing each element of the adjacency matrix to zero
        for (let i = 0; i < this.n; ++i) {
            this.g[i] = [];
            for (let j = 0; j < this.n; ++j) {
                this.g[i][j] = 0;
            }
        }
    }
}


Here the adjacency matrix is g[n][n] in which the degree of each vertex is zero.

Displaying the Graph: The graph is depicted using the adjacency matrix g[n][n] having the number of vertices n. The 2D array(adjacency matrix) is displayed in which if there is an edge between two vertices ‘x’ and ‘y’ then g[x][y] is 1 otherwise 0.  

C++




void displayAdjacencyMatrix()
{
    cout << "\n\n Adjacency Matrix:";
 
    // displaying the 2D array
    for (int i = 0; i < n; ++i) {
        cout << "\n";
        for (int j = 0; j < n; ++j) {
            cout << " " << g[i][j];
        }
    }
}


Java




public void displayAdjacencyMatrix()
{
    System.out.print("\n\n Adjacency Matrix:");
 
    // displaying the 2D array
    for (int i = 0; i < n; ++i) {
        System.out.println();
        for (int j = 0; j < n; ++j) {
            System.out.print(" " + g[i][j]);
        }
    }
}


Python3




def displayAdjacencyMatrix(self):
        print("\n\n Adjacency Matrix:", end ="")
         
        # displaying the 2D array
        for i in range(0, self.__n):
            print()
            for j in range(0, self.__n):
                print("", self.__g[i][j], end ="")


C#




public void DisplayAdjacencyMatrix()
{
    Console.Write("\n\n Adjacency Matrix:");
 
    // Displaying the 2D array
    for (int i = 0; i < n; ++i)
    {
        Console.WriteLine();
        for (int j = 0; j < n; ++j)
        {
            Console.Write(" " + g[i,j]);
        }
    }
}


Javascript




function displayAdjacencyMatrix() {
    console.log("\n\n Adjacency Matrix:");
 
    // displaying the 2D array
    for (let i = 0; i < n; ++i) {
        let row = "";
        for (let j = 0; j < n; ++j) {
            row += " " + g[i][j];
        }
        console.log(row);
    }
}


The above method is a public member function of the class Graph which displays the graph using an adjacency matrix.

Adding Edges between Vertices in the Graph: To add edges between two existing vertices such as vertex ‘x’ and vertex ‘y’ then the elements g[x][y] and g[y][x] of the adjacency matrix will be assigned to 1, depicting that there is an edge between vertex ‘x’ and vertex ‘y’. 

C++




void addEdge(int x, int y)
{
 
    // checks if the vertex exists in the graph
    if ((x >= n) || (y > n)) {
        cout << "Vertex does not exists!";
    }
 
    // checks if the vertex is connecting to itself
    if (x == y) {
        cout << "Same Vertex!";
    }
    else {
        // connecting the vertices
        g[y][x] = 1;
        g[x][y] = 1;
    }
}


Java




public void addEdge(int x, int y)
{
    // checks if the vertex exists in the graph
    if ((x >= n) || (y > n)) {
        System.out.println("Vertex does not exists!");
    }
 
    // checks if the vertex is connecting to itself
    if (x == y) {
        System.out.println("Same Vertex!");
    }
    else {
        // connecting the vertices
        g[y][x] = 1;
        g[x][y] = 1;
    }
}


Python3




def addEdge(self, x, y):
 
        # checks if the vertex exists in the graph
        if(x>= self.__n) or (y >= self.__n):
            print("Vertex does not exists !")
         
        # checks if the vertex is connecting to itself
        if(x == y):
             print("Same Vertex !")
        else:
              
             # connecting the vertices
             self.__g[y][x]= 1
             self.__g[x][y]= 1


C#




public void AddEdge(int x, int y)
{
  // checks if the vertex exists in the graph
  if ((x >= n) || (y > n))
  {
    Console.WriteLine("Vertex does not exists!");
  }
 
  // checks if the vertex is connecting to itself
  if (x == y)
  {
    Console.WriteLine("Same Vertex!");
  }
  else
  {
    // connecting the vertices
    g[y, x] = 1;
    g[x, y] = 1;
  }
}


Javascript




function addEdge(x, y) {
 
    // checks if the vertex exists in the graph
    if ((x >= n) || (y > n)) {
        console.log("Vertex does not exist!");
    }
 
    // checks if the vertex is connecting to itself
    if (x === y) {
        console.log("Same Vertex!");
    }
    else {
        // connecting the vertices
        g[y][x] = 1;
        g[x][y] = 1;
    }
}


Here the above method is a public member function of the class Graph which connects any two existing vertices in the Graph.

Adding a Vertex in the Graph: To add a vertex in the graph, we need to increase both the row and column of the existing adjacency matrix and then initialize the new elements related to that vertex to 0.(i.e the new vertex added is not connected to any other vertex) 

C++




void addVertex()
{
    // increasing the number of vertices
    n++;
    int i;
 
    // initializing the new elements to 0
    for (i = 0; i < n; ++i) {
        g[i][n - 1] = 0;
        g[n - 1][i] = 0;
    }
}


Java




public void addVertex()
{
    // increasing the number of vertices
    n++;
    int i;
 
    // initializing the new elements to 0
    for (i = 0; i < n; ++i) {
        g[i][n - 1] = 0;
        g[n - 1][i] = 0;
    }
}


Python3




def addVertex(self):
          
         # increasing the number of vertices
         self.__n = self.__n + 1;
          
         # initializing the new elements to 0
         for i in range(0, self.__n):
             self.__g[i][self.__n-1]= 0
             self.__g[self.__n-1][i]= 0


Javascript




function addVertex() {
  // increasing the number of vertices
  n++;
  let i;
 
  // initializing the new elements to 0
  for (i = 0; i < n; ++i) {
    g[i][n - 1] = 0;
    g[n - 1][i] = 0;
  }
}


C#




public void addVertex()
{
    // increasing the number of vertices
    n++;
    int i;
 
    // initializing the new elements to 0
    for (i = 0; i < n; ++i) {
        g[i, n - 1] = 0;
        g[n - 1, i] = 0;
    }
}


The above method is a public member function of the class Graph which increments the number of vertices by 1 and the degree of the new vertex is 0.

Removing a Vertex in the Graph: To remove a vertex from the graph, we need to check if that vertex exists in the graph or not and if that vertex exists then we need to shift the rows to the left and the columns upwards of the adjacency matrix so that the row and column values of the given vertex gets replaced by the values of the next vertex and then decrease the number of vertices by 1.In this way that particular vertex will be removed from the adjacency matrix. 

C++




void removeVertex(int x)
{
    // checking if the vertex is present
    if (x > n) {
        cout << "\nVertex not present!";
        return;
    }
    else {
        int i;
 
        // removing the vertex
        while (x < n) {
            // shifting the rows to left side
            for (i = 0; i < n; ++i) {
                g[i][x] = g[i][x + 1];
            }
 
            // shifting the columns upwards
            for (i = 0; i < n; ++i) {
                g[x][i] = g[x + 1][i];
            }
            x++;
        }
 
        // decreasing the number of vertices
        n--;
    }
}


Java




public void removeVertex(int x)
{
    // checking if the vertex is present
    if (x > n) {
        System.out.println("Vertex not present!");
        return;
    }
    else {
        int i;
 
        // removing the vertex
        while (x < n) {
 
            // shifting the rows to left side
            for (i = 0; i < n; ++i) {
                g[i][x] = g[i][x + 1];
            }
 
            // shifting the columns upwards
            for (i = 0; i < n; ++i) {
                g[x][i] = g[x + 1][i];
            }
            x++;
        }
 
        // decreasing the number of vertices
        n--;
    }
}


Python3




def removeVertex(self, x):
         
        # checking if the vertex is present
        if(x>self.__n):
            print("Vertex not present !")
        else:
         
          # removing the vertex
          while(x<self.__n):
         
             # shifting the rows to left side
             for i in range(0, self.__n):
                  self.__g[i][x]= self.__g[i][x + 1]
            
             # shifting the columns upwards
             for i in range(0, self.__n):
                  self.__g[x][i]= self.__g[x + 1][i]
             x = x + 1
 
          # decreasing the number of vertices
          self.__n = self.__n - 1


C#




public void RemoveVertex(int x)
{
    // checking if the vertex is present
    if (x > n) {
        Console.WriteLine("Vertex not present!");
        return;
    }
    else {
        int i;
 
        // removing the vertex
        while (x < n) {
 
            // shifting the rows to left side
            for (i = 0; i < n; ++i) {
                g[i][x] = g[i][x + 1];
            }
 
            // shifting the columns upwards
            for (i = 0; i < n; ++i) {
                g[x][i] = g[x + 1][i];
            }
            x++;
        }
 
        // decreasing the number of vertices
        n--;
    }
}


Javascript




function removeVertex(x) {
  // checking if the vertex is present
  if (x > n) {
    console.log("\nVertex not present!");
    return;
  } else {
    let i;
 
    // removing the vertex
    while (x < n) {
      // shifting the rows to left side
      for (i = 0; i < n; ++i) {
        g[i][x] = g[i][x + 1];
      }
 
      // shifting the columns upwards
      for (i = 0; i < n; ++i) {
        g[x][i] = g[x + 1][i];
      }
      x++;
    }
 
    // decreasing the number of vertices
    n--;
  }
}


The above method is a public member function of the class Graph which removes an existing vertex from the graph by shifting the rows to the left and shifting the columns up to replace the row and column values of that vertex with the next vertex and then decreases the number of vertices by 1 in the graph.

Following is a complete program that uses all of the above methods in a Graph.  

C++




// C++ program to add and remove Vertex in Adjacency Matrix
 
#include <iostream>
 
using namespace std;
 
class Graph {
private:
    // number of vertices
    int n;
 
    // adjacency matrix
    int g[10][10];
 
public:
    // constructor
    Graph(int x)
    {
        n = x;
 
        // initializing each element of the adjacency matrix to zero
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < n; ++j) {
                g[i][j] = 0;
            }
        }
    }
 
    void displayAdjacencyMatrix()
    {
        cout << "\n\n Adjacency Matrix:";
 
        // displaying the 2D array
        for (int i = 0; i < n; ++i) {
            cout << "\n";
            for (int j = 0; j < n; ++j) {
                cout << " " << g[i][j];
            }
        }
    }
 
    void addEdge(int x, int y)
    {
 
        // checks if the vertex exists in the graph
        if ((x >= n) || (y > n)) {
            cout << "Vertex does not exists!";
        }
 
        // checks if the vertex is connecting to itself
        if (x == y) {
            cout << "Same Vertex!";
        }
        else {
            // connecting the vertices
            g[y][x] = 1;
            g[x][y] = 1;
        }
    }
 
    void addVertex()
    {
        // increasing the number of vertices
        n++;
        int i;
 
        // initializing the new elements to 0
        for (i = 0; i < n; ++i) {
            g[i][n - 1] = 0;
            g[n - 1][i] = 0;
        }
    }
 
    void removeVertex(int x)
    {
        // checking if the vertex is present
        if (x > n) {
            cout << "\nVertex not present!";
            return;
        }
        else {
            int i;
 
            // removing the vertex
            while (x < n) {
                // shifting the rows to left side
                for (i = 0; i < n; ++i) {
                    g[i][x] = g[i][x + 1];
                }
 
                // shifting the columns upwards
                for (i = 0; i < n; ++i) {
                    g[x][i] = g[x + 1][i];
                }
                x++;
            }
 
            // decreasing the number of vertices
            n--;
        }
    }
};
 
int main()
{
    // creating objects of class Graph
    Graph obj(4);
 
    // calling methods
    obj.addEdge(0, 1);
    obj.addEdge(0, 2);
    obj.addEdge(1, 2);
    obj.addEdge(2, 3);
    // the adjacency matrix created
    obj.displayAdjacencyMatrix();
 
    // adding a vertex to the graph
    obj.addVertex();
    // connecting that vertex to other existing vertices
    obj.addEdge(4, 1);
    obj.addEdge(4, 3);
    // the adjacency matrix with a new vertex
    obj.displayAdjacencyMatrix();
 
    // removing an existing vertex in the graph
    obj.removeVertex(1);
    // the adjacency matrix after removing a vertex
    obj.displayAdjacencyMatrix();
 
    return 0;
}


Java




// Java program to add and remove Vertex in Adjacency Matrix
class Graph
{
    // number of vertices
    private int n;
 
    // adjacency matrix
    private int[][] g = new int[10][10];
 
    // constructor
    Graph(int x)
    {
        this.n = x;
        int i, j;
 
        // initializing each element of
        // the adjacency matrix to zero
        for (i = 0; i < n; ++i)
        {
            for (j = 0; j < n; ++j)
            {
                g[i][j] = 0;
            }
        }
    }
 
    public void displayAdjacencyMatrix()
    {
        System.out.print("\n\n Adjacency Matrix:");
 
        // displaying the 2D array
        for (int i = 0; i < n; ++i)
        {
            System.out.println();
            for (int j = 0; j < n; ++j)
            {
                System.out.print(" " + g[i][j]);
            }
        }
    }
 
    public void addEdge(int x, int y)
    {
        // checks if the vertex exists in the graph
        if ((x >= n) || (y > n))
        {
            System.out.println("Vertex does not exists!");
        }
 
        // checks if the vertex is connecting to itself
        if (x == y)
        {
            System.out.println("Same Vertex!");
        }
        else
        {
            // connecting the vertices
            g[y][x] = 1;
            g[x][y] = 1;
        }
    }
 
    public void addVertex()
    {
        // increasing the number of vertices
        n++;
        int i;
 
        // initializing the new elements to 0
        for (i = 0; i < n; ++i)
        {
            g[i][n - 1] = 0;
            g[n - 1][i] = 0;
        }
    }
 
    public void removeVertex(int x)
    {
        // checking if the vertex is present
        if (x > n)
        {
            System.out.println("Vertex not present!");
            return;
        }
        else
        {
            int i;
 
            // removing the vertex
            while (x < n)
            {
 
                // shifting the rows to left side
                for (i = 0; i < n; ++i)
                {
                    g[i][x] = g[i][x + 1];
                }
 
                // shifting the columns upwards
                for (i = 0; i < n; ++i)
                {
                    g[x][i] = g[x + 1][i];
                }
                x++;
            }
 
            // decreasing the number of vertices
            n--;
        }
    }
}
 
class Main
{
    public static void main(String[] args)
    {
        // creating objects of class Graph
        Graph obj = new Graph(4);
 
        // calling methods
        obj.addEdge(0, 1);
        obj.addEdge(0, 2);
        obj.addEdge(1, 2);
        obj.addEdge(2, 3);
         
        // the adjacency matrix created
        obj.displayAdjacencyMatrix();
 
        // adding a vertex to the graph
        obj.addVertex();
         
        // connecting that vertex to other existing vertices
        obj.addEdge(4, 1);
        obj.addEdge(4, 3);
         
        // the adjacency matrix with a new vertex
        obj.displayAdjacencyMatrix();
 
        // removing an existing vertex in the graph
        obj.removeVertex(1);
         
        // the adjacency matrix after removing a vertex
        obj.displayAdjacencyMatrix();
    }
}


Python3




# Python program to add and remove Vertex in Adjacency Matrix
 
class Graph:
     # number of vertices
     __n = 0
  
     # adjacency matrix
     __g =[[0 for x in range(10)] for y in range(10)]
       
     # constructor
     def __init__(self, x):
        self.__n = x
  
        # initializing each element of the adjacency matrix to zero
        for i in range(0, self.__n):
            for j in range(0, self.__n):
                self.__g[i][j]= 0
 
     def displayAdjacencyMatrix(self):
        print("\n\n Adjacency Matrix:", end ="")
         
        # displaying the 2D array
        for i in range(0, self.__n):
            print()
            for j in range(0, self.__n):
                print("", self.__g[i][j], end ="")
     def addEdge(self, x, y):
 
        # checks if the vertex exists in the graph
        if(x>= self.__n) or (y >= self.__n):
            print("Vertex does not exists !")
          
        # checks if the vertex is connecting to itself
        if(x == y):
             print("Same Vertex !")
        else:
               
             # connecting the vertices
             self.__g[y][x]= 1
             self.__g[x][y]= 1     
 
     def addVertex(self):
           
         # increasing the number of vertices
         self.__n = self.__n + 1;
           
         # initializing the new elements to 0
         for i in range(0, self.__n):
             self.__g[i][self.__n-1]= 0
             self.__g[self.__n-1][i]= 0                 
     def removeVertex(self, x):
          
        # checking if the vertex is present
        if(x>self.__n):
             print("Vertex not present !")
        else:
          
             # removing the vertex
             while(x<self.__n):
          
                 # shifting the rows to left side
                 for i in range(0, self.__n):
                       self.__g[i][x]= self.__g[i][x + 1]
             
                 # shifting the columns upwards
                 for i in range(0, self.__n):
                       self.__g[x][i]= self.__g[x + 1][i]
                 x = x + 1
  
             # decreasing the number of vertices
             self.__n = self.__n - 1            
 
 
# creating objects of class Graph
obj = Graph(4);
      
# calling methods
obj.addEdge(0, 1);
obj.addEdge(0, 2);
obj.addEdge(1, 2);
obj.addEdge(2, 3);
# the adjacency matrix created
obj.displayAdjacencyMatrix();
  
# adding a vertex to the graph
obj.addVertex();
# connecting that vertex to other existing vertices
obj.addEdge(4, 1);
obj.addEdge(4, 3);
# the adjacency matrix with a new vertex
obj.displayAdjacencyMatrix();
      
# removing an existing vertex in the graph
obj.removeVertex(1);
# the adjacency matrix after removing a vertex
obj.displayAdjacencyMatrix();


C#




// C# program to add and remove Vertex in Adjacency Matrix
using System;
 
public class Graph
{
    // number of vertices
    private int n;
 
    // adjacency matrix
    private int[,] g = new int[10, 10];
 
    // constructor
    public Graph(int x)
    {
        this.n = x;
        int i, j;
 
        // initializing each element of the adjacency matrix to zero
        for (i = 0; i < n; ++i)
        {
            for (j = 0; j < n; ++j)
            {
                g[i, j] = 0;
            }
        }
    }
 
    public void displayAdjacencyMatrix()
    {
        Console.Write("\n\n Adjacency Matrix:");
 
        // displaying the 2D array
        for (int i = 0; i < n; ++i)
        {
            Console.WriteLine();
            for (int j = 0; j < n; ++j)
            {
                Console.Write(" " + g[i, j]);
            }
        }
    }
 
    public void addEdge(int x, int y)
    {
        // checks if the vertex exists in the graph
        if ((x >= n) || (y > n))
        {
            Console.WriteLine("Vertex does not exists!");
        }
 
        // checks if the vertex is connecting to itself
        if (x == y)
        {
            Console.WriteLine("Same Vertex!");
        }
        else
        {
            // connecting the vertices
            g[y, x] = 1;
            g[x, y] = 1;
        }
    }
 
    public void addVertex()
    {
        // increasing the number of vertices
        n++;
        int i;
 
        // initializing the new elements to 0
        for (i = 0; i < n; ++i)
        {
            g[i, n - 1] = 0;
            g[n - 1, i] = 0;
        }
    }
 
    public void removeVertex(int x)
    {
        // checking if the vertex is present
        if (x > n)
        {
            Console.WriteLine("Vertex not present!");
            return;
        }
        else
        {
            int i;
 
            // removing the vertex
            while (x < n)
            {
 
                // shifting the rows to left side
                for (i = 0; i < n; ++i)
                {
                    g[i, x] = g[i, x + 1];
                }
 
                // shifting the columns upwards
                for (i = 0; i < n; ++i)
                {
                    g[x, i] = g[x + 1, i];
                }
                x++;
            }
 
            // decreasing the number of vertices
            n--;
        }
    }
}
 
public class GFG
{
    // Driver code
    public static void Main(String[] args)
    {
        // creating objects of class Graph
        Graph obj = new Graph(4);
 
        // calling methods
        obj.addEdge(0, 1);
        obj.addEdge(0, 2);
        obj.addEdge(1, 2);
        obj.addEdge(2, 3);
        // the adjacency matrix created
        obj.displayAdjacencyMatrix();
 
        // adding a vertex to the graph
        obj.addVertex();
         
        // connecting that vertex to other existing vertices
        obj.addEdge(4, 1);
        obj.addEdge(4, 3);
         
        // the adjacency matrix with a new vertex
        obj.displayAdjacencyMatrix();
 
        // removing an existing vertex in the graph
        obj.removeVertex(1);
         
        // the adjacency matrix after removing a vertex
        obj.displayAdjacencyMatrix();
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
// Javascript program to add and remove Vertex in Adjacency Matrix
 
class Graph
{
     
    // constructor
    constructor(x)
    {
        // number of vertices
        this.n=x;
   
        // adjacency matrix
        this.g = new Array(10);
        for(let i=0;i<10;i++)
        {
            this.g[i]=new Array(10);
            for(let j=0;j<10;j++)
            {
                this.g[i][j]=0;
            }
        }
    }
     
    displayAdjacencyMatrix()
    {
        document.write("<br><br> Adjacency Matrix:");
  
        // displaying the 2D array
        for (let i = 0; i < this.n; ++i)
        {
            document.write("<br>");
            for (let j = 0; j < this.n; ++j)
            {
                document.write(" " + this.g[i][j]);
            }
        }
    }
     
    addEdge(x,y)
    {
        // checks if the vertex exists in the graph
        if ((x >= this.n) || (y > this.n))
        {
            document.write("Vertex does not exists!<br>");
        }
  
        // checks if the vertex is connecting to itself
        if (x == y)
        {
            document.write("Same Vertex!<br>");
        }
        else
        {
            // connecting the vertices
            this.g[y][x] = 1;
            this.g[x][y] = 1;
        }
    }
     
    addVertex()
    {
        // increasing the number of vertices
        this.n++;
        let i;
  
        // initializing the new elements to 0
        for (i = 0; i < this.n; ++i)
        {
            this.g[i][this.n - 1] = 0;
            this.g[this.n - 1][i] = 0;
        }
    }
     
    removeVertex(x)
    {
        // checking if the vertex is present
        if (x > this.n)
        {
            document.write("Vertex not present!<br>");
            return;
        }
        else
        {
            let i;
  
            // removing the vertex
            while (x < this.n)
            {
  
                // shifting the rows to left side
                for (i = 0; i < this.n; ++i)
                {
                    this.g[i][x] = this.g[i][x + 1];
                }
  
                // shifting the columns upwards
                for (i = 0; i < this.n; ++i)
                {
                    this.g[x][i] = this.g[x + 1][i];
                }
                x++;
            }
  
            // decreasing the number of vertices
            this.n--;
        }
    }
     
}
 
// creating objects of class Graph
let obj = new Graph(4);
 
// calling methods
obj.addEdge(0, 1);
obj.addEdge(0, 2);
obj.addEdge(1, 2);
obj.addEdge(2, 3);
 
// the adjacency matrix created
obj.displayAdjacencyMatrix();
 
// adding a vertex to the graph
obj.addVertex();
 
// connecting that vertex to other existing vertices
obj.addEdge(4, 1);
obj.addEdge(4, 3);
 
// the adjacency matrix with a new vertex
obj.displayAdjacencyMatrix();
 
// removing an existing vertex in the graph
obj.removeVertex(1);
 
// the adjacency matrix after removing a vertex
obj.displayAdjacencyMatrix();
 
 
 
 
 
// This code is contributed by rag2127
</script>


Output: 

Adjacency Matrix:
0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

Adjacency Matrix:
0 1 1 0 0
1 0 1 0 1
1 1 0 1 0
0 0 1 0 1
0 1 0 1 0

Adjacency Matrix:
0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

Adjacency matrices waste a lot of memory space. Such matrices are found to be very sparse. This representation requires space for n*n elements, the time complexity of the addVertex() method is O(n), and the time complexity of the removeVertex() method is O(n*n) for a graph of n vertices. 

From the output of the program, the Adjacency Matrix is:

And the Graph depicted by the above Adjacency Matrix is:

 



Similar Reads

Add and Remove vertex in Adjacency List representation of Graph
Prerequisites: Linked List, Graph Data Structure In this article, adding and removing a vertex is discussed in a given adjacency list representation. Let the Directed Graph be: The graph can be represented in the Adjacency List representation as: It is a Linked List representation where the head of the linked list is a vertex in the graph and all t
10 min read
Comparison between Adjacency List and Adjacency Matrix representation of Graph
A Graph is a non-linear data structure consisting of nodes and edges. The nodes are sometimes also referred to as vertices and the edges are lines or arcs that connect any two nodes in the graph. In this article, we will understand the difference between the ways of representation of the graph. A graph can be represented in mainly two ways. They ar
4 min read
Convert Adjacency Matrix to Adjacency List representation of Graph
Prerequisite: Graph and its representations Given a adjacency matrix representation of a Graph. The task is to convert the given Adjacency Matrix to Adjacency List representation. Examples: Input: arr[][] = [ [0, 0, 1], [0, 0, 1], [1, 1, 0] ] Output: The adjacency list is: 0 -&gt; 2 1 -&gt; 2 2 -&gt; 0 -&gt; 1Input: arr[][] = [ [0, 1, 0, 0, 1], [1,
6 min read
Convert Adjacency List to Adjacency Matrix representation of a Graph
Given an adjacency list representation of a Graph, the task is to convert the given Adjacency List to Adjacency Matrix representation. Examples: Input: adjList[] = {{0 --&gt; 1 --&gt; 3}, {1 --&gt; 2}, {2 --&gt; 3}} Output: 0 1 0 10 0 1 00 0 0 10 0 0 0 Input: adjList[] = {{0 --&gt; 1 --&gt; 4}, {1 --&gt; 0 --&gt; 2 --&gt; 3 --&gt; 4}, {2 --&gt; 1 -
9 min read
Add and Remove Edge in Adjacency Matrix representation of a Graph
Prerequisites: Graph and its representationsGiven an adjacency matrix g[][] of a graph consisting of N vertices, the task is to modify the matrix after insertion of all edges[] and removal of edge between vertices (X, Y). In an adjacency matrix, if an edge exists between vertices i and j of the graph, then g[i][j] = 1 and g[j][i] = 1. If no edge ex
13 min read
Add and Remove Edge in Adjacency List representation of a Graph
Prerequisites: Graph and Its RepresentationIn this article, adding and removing edge is discussed in a given adjacency list representation. A vector has been used to implement the graph using adjacency list representation. It is used to store the adjacency lists of all the vertices. The vertex number is used as the index in this vector. Example: Be
8 min read
Check if incoming edges in a vertex of directed graph is equal to vertex itself or not
Given a directed Graph G(V, E) with V vertices and E edges, the task is to check that for all vertices of the given graph, the incoming edges in a vertex is equal to the vertex itself or not. Examples: Input: Output: Yes Explanation: For vertex 0 there are 0 incoming edges, for vertex 1 there is 1 incoming edge. Same for vertex 2 nd 3. Approach: Th
6 min read
Check if vertex X lies in subgraph of vertex Y for the given Graph
Given an undirected graph and two vertices X and Y, our task is to check whether the vertex X lies in the subgraph of the vertex Y. Examples: Input: X = 2, Y = 3 Output: No Explanation: Subgraph of a vertex Y = 3 is set of all the vertex which lies below Y and are reachable by Y. Here subgraph of 3 contains {6} not 2. Input: X = 6, Y = 1 Output: Ye
10 min read
Check if every vertex triplet in graph contains two vertices connected to third vertex
Given an undirected graph with N vertices and K edges, the task is to check if for every combination of three vertices in the graph, there exists two vertices which are connected to third vertex. In other words, for every vertex triplet (a, b, c), if there exists a path between a and c, then there should also exist a path between b and c. Examples:
9 min read
Prim's Algorithm (Simple Implementation for Adjacency Matrix Representation)
We have discussed Prim's algorithm and its implementation for adjacency matrix representation of graphs. As discussed in the previous post, in Prim's algorithm, two sets are maintained, one set contains list of vertices already included in MST, other set contains vertices not yet included. In every iteration, we consider the minimum weight edge amo
9 min read
Article Tags :
Practice Tags :