Open In App

Graph terminology in data structure

Last Updated : 26 Mar, 2024
Improve
Improve
Like Article
Like
Save
Share
Report

Graphs are fundamental data structures in various computer science applications, including network design, social network analysis, and route planning. Understanding graph terminology is crucial for effectively navigating and manipulating graph data structures. In this article, we will discuss the graph terminology used in the data structure.

Importance of Graph Terminology:

Graph terminology is important for understanding and communicating about relationships and connections in data. It provides a common language for describing the components of a graph, such as vertices (nodes) and edges (connections). This clarity helps in problem-solving, algorithm design, data representation, and collaboration.

Basic Graph Terminology:

1. Graph

A Graph G is a non-empty set of vertices (or nodes) V and a set of edges E, where each edge connects a pair of vertices. Formally, a graph can be represented as G= (V, E). Graphs can be classified based on various properties, such as directedness of edges and connectivity.

2. Vertex (Node)

A Vertex, often referred to as a Node, is a fundamental unit of a graph. It represents an entity within the graph. In applications like social networks, vertices can represent individuals, while in road networks, they can represent intersections or locations.

3. Edge

An Edge is a connection between two vertices in a graph. It can be either directed or undirected. In a directed graph, edges have a specific direction, indicating a one-way connection between vertices. In contrast, undirected graphs have edges that do not have a direction and represent bidirectional connections.

4. Degree of a Vertex

The Degree of a Vertex in a graph is the number of edges incident to that vertex. In a directed graph, the degree is further categorized into the in-degree (number of incoming edges) and out-degree (number of outgoing edges) of the vertex.

5. Path

A Path in a graph is a sequence of vertices where each adjacent pair is connected by an edge. Paths can be of varying lengths and may or may not visit the same vertex more than once. The shortest path between two vertices is of particular interest in algorithms such as Dijkstra’s algorithm for finding the shortest path in weighted graphs.

6. Cycle

A Cycle in a graph is a path that starts and ends at the same vertex, with no repetitions of vertices (except the starting and ending vertex, which are the same). Cycles are essential in understanding the connectivity and structure of a graph and play a significant role in cycle detection algorithms.

Advanced Graph Terminology:

1. Directed Graph (Digraph):

A Directed Graph consists of nodes (vertices) connected by directed edges (arcs). Each edge has a specific direction, meaning it goes from one node to another. Directed Graph is a network where information flows in a specific order. Examples include social media follower relationships, web page links, and transportation routes with one-way streets.

2. Undirected Graph:

In an Undirected Graph, edges have no direction. They simply connect nodes without any inherent order. For example, a social network where friendships exist between people, or a map of cities connected by roads (where traffic can flow in both directions).

3. Weighted Graph:

Weighted graphs assign numerical values (weights) to edges. These weights represent some property associated with the connection between nodes. For example, road networks with varying distances between cities, or airline routes with different flight durations, are examples of weighted graphs.

4. Unweighted Graph:

An unweighted graph has no edge weights. It focuses solely on connectivity between nodes. For example: a simple social network where friendships exist without any additional information, or a family tree connecting relatives.

5. Connected Graph:

A graph is connected if there is a path between any pair of nodes. In other words, you can reach any node from any other node. Even a single-node graph is considered connected. For larger graphs, there’s always a way to move from one node to another.

6. Acyclic Graph:

An acyclic graph contains no cycles (closed loops). In other words, you cannot start at a node and follow edges to return to the same node. Examples include family trees (without marriages between relatives) or dependency graphs in software development.

7. Cyclic Graph:

A cyclic graph has at least one cycle. You can traverse edges and eventually return to the same node. For example: circular road system or a sequence of events that repeats indefinitely.

8. Connected Graph

A Graph is connected if there is a path between every pair of vertices in the graph. In a directed graph, the concept of strong connectivity refers to the existence of a directed path between every pair of vertices.

9. Disconnected Graph:

A disconnected graph has isolated components that are not connected to each other. These components are separate subgraphs.

10. Tree

A Tree is a connected graph with no cycles. It is a fundamental data structure in computer science, commonly used in algorithms like binary search trees and heap data structures. Trees have properties such as a single root node, parent-child relationships between nodes, and a unique path between any pair of nodes.

Applications of Graph:

  • Transportation Systems: Google Maps employs graphs to map roads, where intersections are vertices and roads are edges. It calculates shortest paths for efficient navigation.
  • Social Networks: Platforms like Facebook model users as vertices and friendships as edges, using graph theory for friend suggestions.
  • World Wide Web: Web pages are vertices, and links between them are directed edges, inspiring Google’s Page Ranking Algorithm.
  • Resource Allocation and Deadlock Prevention: Operating systems use resource allocation graphs to prevent deadlocks by detecting cycles.
  • Mapping Systems and GPS Navigation: Graphs help in locating places and optimizing routes in mapping systems and GPS navigation.
  • Graph Algorithms and Measures: Graphs are analyzed for structural properties and measurable quantities, including dynamic properties in networks.

Conclusion:

Graph theory is integral to programming, providing a framework to solve problems like network flows, shortest paths, and resource allocation. It’s used in social networks, transportation, and even biology. The terminology forms the basis for understanding and applying graph algorithms effectively. As technology evolves, the applications of graph theory in programming continue to expand, making it an evergreen subject of study and innovation.



Similar Reads

Static Data Structure vs Dynamic Data Structure
Data structure is a way of storing and organizing data efficiently such that the required operations on them can be performed be efficient with respect to time as well as memory. Simply, Data Structure are used to reduce complexity (mostly the time complexity) of the code. Data structures can be two types : 1. Static Data Structure 2. Dynamic Data
4 min read
Sorting Terminology
What is in-place sorting? An in-place sorting algorithm uses constant space for producing the output (modifies the given array only). It sorts the list only by modifying the order of the elements within the list. For example, Insertion Sort and Selection Sorts are in-place sorting algorithms as they do not use any additional space for sorting the l
2 min read
Applications of Graph Data Structure
A graph is a non-linear data structure, which consists of vertices(or nodes) connected by edges(or arcs) where edges may be directed or undirected. In Computer science graphs are used to represent the flow of computation.Google maps uses graphs for building transportation systems, where intersection of two(or more) roads are considered to be a vert
3 min read
What is Graph Data Structure?
A Graph is a non-linear data structure consisting of vertices and edges. The vertices are sometimes also referred to as nodes and the edges are lines or arcs that connect any two nodes in the graph. More formally a Graph is composed of a set of vertices( V ) and a set of edges( E ). The graph is denoted by G(E, V). Components of a GraphVertices: Ve
3 min read
Graph Data Structure And Algorithms
Graph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. Graph algorithms are methods used to manipulate and analyze graphs, solving various problems like finding the shortest path or detecting cycles. Table of Content What is Graph Data Structure?Components of a GraphBasic O
6 min read
Introduction to Graph Data Structure
Graph Data Structure is a non-linear data structure consisting of vertices and edges. It is useful in fields such as social network analysis, recommendation systems, and computer networks. In the field of sports data science, graph data structure can be used to analyze and understand the dynamics of team performance and player interactions on the f
15+ min read
Is array a Data Type or Data Structure?
What is Data Type? In computer programming, a data type is a classification of data that determines the type of values that can be stored, manipulated, and processed. It tells the computer what kind of data a particular variable or constant can hold, and what operations can be performed on that data. Common data types include integers, floating-poi
8 min read
Data Structure Alignment : How data is arranged and accessed in Computer Memory?
Data structure alignment is the way data is arranged and accessed in computer memory. Data alignment and Data structure padding are two different issues but are related to each other and together known as Data Structure alignment. Data alignment: Data alignment means putting the data in memory at an address equal to some multiple of the word size.
4 min read
Difference between data type and data structure
Data Type A data type is the most basic and the most common classification of data. It is this through which the compiler gets to know the form or the type of information that will be used throughout the code. So basically data type is a type of information transmitted between the programmer and the compiler where the programmer informs the compile
4 min read
Detect cycle in the graph using degrees of nodes of graph
Given a graph, the task is to detect a cycle in the graph using degrees of the nodes in the graph and print all the nodes that are involved in any of the cycles. If there is no cycle in the graph then print -1. Examples: Input: Output: 0 1 2 Approach: Recursively remove all vertices of degree 1. This can be done efficiently by storing a map of vert
11 min read
Article Tags :
Practice Tags :