K’th Smallest/Largest Element in Unsorted Array
Given an array arr[] of size N and a number K, where K is smaller than the size of the array. Find the K’th smallest element in the given array. Given that all array elements are distinct.
Examples:
Input: arr[] = {7, 10, 4, 3, 20, 15}, K = 3
Output: 7Input: arr[] = {7, 10, 4, 3, 20, 15}, K = 4
Output: 10
K’th smallest element in an unsorted array using Sorting:
Sort the given array and return the element at index K-1 in the sorted array.
- Sort the input array in the increasing order
- Return the element at the K-1 index (0 – Based indexing) in the sorted array
Below is the Implementation of the above approach:
// C++ program to find K'th smallest element
#include <bits/stdc++.h>
using namespace std;
// Function to return K'th smallest element in a given array
int kthSmallest(int arr[], int N, int K)
{
// Sort the given array
sort(arr, arr + N);
// Return k'th element in the sorted array
return arr[K - 1];
}
// Driver's code
int main()
{
int arr[] = { 12, 3, 5, 7, 19 };
int N = sizeof(arr) / sizeof(arr[0]), K = 2;
// Function call
cout << "K'th smallest element is "
<< kthSmallest(arr, N, K);
return 0;
}
// This code is contributed by Sania Kumari Gupta
// (kriSania804)
// C program to find K'th smallest element
#include <stdio.h>
#include <stdlib.h>
// Compare function for qsort
int cmpfunc(const void* a, const void* b)
{
return (*(int*)a - *(int*)b);
}
// Function to return K'th smallest
// element in a given array
int kthSmallest(int arr[], int N, int K)
{
// Sort the given array
qsort(arr, N, sizeof(int), cmpfunc);
// Return k'th element in the sorted array
return arr[K - 1];
}
// Driver's code
int main()
{
int arr[] = { 12, 3, 5, 7, 19 };
int N = sizeof(arr) / sizeof(arr[0]), K = 2;
// Function call
printf("K'th smallest element is %d",
kthSmallest(arr, N, K));
return 0;
}
// This code is contributed by Sania Kumari Gupta
// (kriSania804)
// Java code for Kth smallest element
// in an array
import java.util.Arrays;
import java.util.Collections;
class GFG {
// Function to return K'th smallest
// element in a given array
public static int kthSmallest(Integer[] arr, int K)
{
// Sort the given array
Arrays.sort(arr);
// Return K'th element in
// the sorted array
return arr[K - 1];
}
// driver's code
public static void main(String[] args)
{
Integer arr[] = new Integer[] { 12, 3, 5, 7, 19 };
int K = 2;
// Function call
System.out.print("K'th smallest element is "
+ kthSmallest(arr, K));
}
}
// This code is contributed by Chhavi
# Python3 program to find K'th smallest
# element
# Function to return K'th smallest
# element in a given array
def kthSmallest(arr, N, K):
# Sort the given array
arr.sort()
# Return k'th element in the
# sorted array
return arr[K-1]
# Driver code
if __name__ == '__main__':
arr = [12, 3, 5, 7, 19]
N = len(arr)
K = 2
# Function call
print("K'th smallest element is",
kthSmallest(arr, N, K))
# This code is contributed by
# Shrikant13
// C# code for Kth smallest element
// in an array
using System;
class GFG {
// Function to return K'th smallest
// element in a given array
public static int kthSmallest(int[] arr, int K)
{
// Sort the given array
Array.Sort(arr);
// Return k'th element in
// the sorted array
return arr[K - 1];
}
// driver's program
public static void Main()
{
int[] arr = new int[] { 12, 3, 5, 7, 19 };
int K = 2;
// Function call
Console.Write("K'th smallest element"
+ " is " + kthSmallest(arr, K));
}
}
// This code is contributed by nitin mittal.
// Simple Javascript program to find K'th smallest element
// Function to return K'th smallest element in a given array
function kthSmallest(arr, N, K)
{
// Sort the given array
arr.sort((a,b) => a-b);
// Return k'th element in the sorted array
return arr[K - 1];
}
// Driver program to test above methods
let arr = [12, 3, 5, 7, 19];
let N = arr.length, K = 2;
console.log("K'th smallest element is " + kthSmallest(arr, N, K));
//This code is contributed by Mayank Tyagi
<?php
// Simple PHP program to find
// K'th smallest element
// Function to return K'th smallest
// element in a given array
function kthSmallest($arr, $N, $K)
{
// Sort the given array
sort($arr);
// Return k'th element
// in the sorted array
return $arr[$K - 1];
}
// Driver's Code
$arr = array(12, 3, 5, 7, 19);
$N =count($arr);
$K = 2;
// Function call
echo "K'th smallest element is ", kthSmallest($arr, $N, $K);
// This code is contributed by anuj_67.
?>
Output
K'th smallest element is 5
Time Complexity: O(N log N)
Auxiliary Space: O(1)
K’th smallest element in an unsorted array using Binary Search on Answer:
To find the kth smallest element using binary search on the answer, we start by defining a search range based on the minimum and maximum values in the input array. In each iteration of binary search, we count the elements smaller than or equal to the midpoint and update the search range accordingly. This process continues until the range collapses to a single element, which is the kth smallest element.
Follow the given steps to solve the problem:
- Intialize low and high to minimum and maximum element of the array denoting the range within which the answer lies.
- Apply Binary Search on this range.
- If the selected element by calculating mid has less than K elements lesser to it then increase the number that is low = mid + 1.
- Otherwise, Decrement the high pointer, i.e high = mid.
- The Binary Search will end when only one element remains in the answer space that would be the answer.
Below is the implementation of above approach:
// C++ code for the above approach
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
int count(vector<int>& nums, int& mid)
{
// function to calculate number of elements less than
// equal to mid
int cnt = 0;
for (int i = 0; i < nums.size(); i++)
if (nums[i] <= mid)
cnt++;
return cnt;
}
int kthSmallest(vector<int> nums, int& k)
{
int low = INT_MAX;
int high = INT_MIN;
// calculate minimum and maximum the array.
for (int i = 0; i < nums.size(); i++) {
low = min(low, nums[i]);
high = max(high, nums[i]);
}
// Our answer range lies between minimum and maximum
// element of the array on which Binary Search is
// Applied
while (low < high) {
int mid = low + (high - low) / 2;
/*if the count of number of elements in the array
less than equal to mid is less than k then
increase the number. Otherwise decrement the
number and try to find a better answer.
*/
if (count(nums, mid) < k)
low = mid + 1;
else
high = mid;
}
return low;
}
// Driver's code
int main()
{
vector<int> nums{ 1, 4, 5, 3, 19, 3 };
int k = 3;
// Function call
cout << "K'th smallest element is "
<< kthSmallest(nums, k);
return 0;
}
// This code is contributed by garvjuneja98
// Java code for kth smallest element in an array
import java.util.Arrays;
import java.util.Collections;
class GFG {
static int count(int[] nums, int mid)
{
// function to calculate number of elements less
// than equal to mid
int cnt = 0;
for (int i = 0; i < nums.length; i++)
if (nums[i] <= mid)
cnt++;
return cnt;
}
static int kthSmallest(int[] nums, int k)
{
int low = Integer.MAX_VALUE;
int high = Integer.MIN_VALUE;
// calculate minimum and maximum the array.
for (int i = 0; i < nums.length; i++) {
low = Math.min(low, nums[i]);
high = Math.max(high, nums[i]);
}
// Our answer range lies between minimum and maximum
// element of the array on which Binary Search is
// Applied
while (low < high) {
int mid = low + (high - low) / 2;
/*if the count of number of elements in the
array less than equal to mid is less than k
then increase the number. Otherwise decrement
the number and try to find a better answer.
*/
if (count(nums, mid) < k)
low = mid + 1;
else
high = mid;
}
return low;
}
// Driver's code
public static void main(String[] args)
{
int arr[] = { 1, 4, 5, 3, 19, 3 };
int k = 3;
// Function call
System.out.print("Kth smallest element is "
+ kthSmallest(arr, k));
}
}
// This code is contributed by CodeWithMini
# Python3 code for kth smallest element in an array
import sys
# function to calculate number of elements
# less than equal to mid
def count(nums, mid):
cnt = 0
for i in range(len(nums)):
if nums[i] <= mid:
cnt += 1
return cnt
def kthSmallest(nums, k):
low = sys.maxsize
high = -sys.maxsize - 1
# calculate minimum and maximum the array.
for i in range(len(nums)):
low = min(low, nums[i])
high = max(high, nums[i])
# Our answer range lies between minimum and maximum element
# of the array on which Binary Search is Applied
while low < high:
mid = low + (high - low) // 2
# if the count of number of elements in the array less than equal
# to mid is less than k then increase the number. Otherwise decrement
# the number and try to find a better answer.
if count(nums, mid) < k:
low = mid + 1
else:
high = mid
return low
# Driver's code
if __name__ == "__main__":
nums = [1, 4, 5, 3, 19, 3]
k = 3
# Function call
print("K'th smallest element is", kthSmallest(nums, k))
# This code is contributed by Tapesh(tapeshdua420)
// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
class GFG {
static int count(int[] nums, int mid)
{
// function to calculate number of elements less
// than equal to mid
int cnt = 0;
for (int i = 0; i < nums.Length; i++)
if (nums[i] <= mid)
cnt++;
return cnt;
}
static int kthSmallest(int[] nums, int k)
{
int low = Int32.MaxValue;
int high = Int32.MinValue;
// calculate minimum and maximum the array.
for (int i = 0; i < nums.Length; i++) {
low = Math.Min(low, nums[i]);
high = Math.Max(high, nums[i]);
}
// Our answer range lies between minimum
// and maximum element of the array on which Binary
// Search is Applied
while (low < high) {
int mid = low + (high - low) / 2;
/*if the count of number of elements in the
array less than equal to mid is less
than k then increase the number. Otherwise
decrement the number and try to find
a better answer.
*/
if (count(nums, mid) < k)
low = mid + 1;
else
high = mid;
}
return low;
}
// Driver's Code
public static void Main()
{
// Given array
int[] vec = { 1, 4, 5, 3, 19, 3 };
// Given K
int K = 3;
// Function Call
Console.WriteLine("Kth Smallest Element: "
+ kthSmallest(vec, K));
}
}
// This code is contributed by CodeWithMini
// Javascript program to find the K’th
// Smallest/Largest Element in Unsorted Array
function count(nums, mid)
{
// function to calculate number of elements less than equal to mid
var cnt = 0;
for(var i = 0; i < nums.length; i++)
if(nums[i] <= mid)
cnt++;
return cnt;
}
function kthSmallest(nums,k){
var low = Number. MAX_VALUE;
var high = Number. MIN_VALUE;
// calculate minimum and maximum the array.
for(var i = 0; i < nums.length; i++)
{
low = Math.min(low, nums[i]);
high = Math.max(high, nums[i]);
}
// Our answer range lies between minimum and
// maximum element of the array on which Binary Search is Applied
while(low < high)
{
var mid = Math.floor(low + ((high - low) / 2));
/*if the count of number of elements in the array
less than equal to mid is less than k
then increase the number. Otherwise
decrement the number and try to find a better answer.
*/
if(count(nums, mid) < k)
low = mid + 1;
else
high = mid;
}
return low;
}
var k = 3;
var nums = [1, 4, 5, 3, 19, 3];
console.log("K'th smallest element is " + kthSmallest(nums, k));
// This code is contributed by shruti456rawal
Output
K'th smallest element is 3
Time complexity: O(n * log (mx-mn)), where mn be minimum and mx be maximum element of array.
Auxiliary Space: O(1)
K’th smallest element in an unsorted array using Priority Queue(Max-Heap):
The intuition behind this approach is to maintain a max heap (priority queue) of size K while iterating through the array. Doing this ensures that the max heap always contains the K smallest elements encountered so far. If the size of the max heap exceeds K, remove the largest element this step ensures that the heap maintains the K smallest elements encountered so far. In the end, the max heap’s top element will be the Kth smallest element.
- Initialize a max heap (priority queue) pq.
- For each element in the array:
- Push the element onto the max heap.
- If the size of the max heap exceeds K, pop (remove) the largest element from the max heap. This step ensures that the max heap maintains the K smallest elements encountered so far.
- After processing all elements, the max heap will contain the K smallest elements, with the largest of these K elements at the top.
Below is the Implementation of the above approach:
#include <bits/stdc++.h>
using namespace std;
// Function to find the kth smallest array element
int kthSmallest(int arr[], int N, int K)
{
// Create a max heap (priority queue)
priority_queue<int> pq;
// Iterate through the array elements
for (int i = 0; i < N; i++) {
// Push the current element onto the max heap
pq.push(arr[i]);
// If the size of the max heap exceeds K, remove the largest element
if (pq.size() > K)
pq.pop();
}
// Return the Kth smallest element (top of the max heap)
return pq.top();
}
// Driver's code:
int main()
{
int N = 10;
int arr[N] = { 10, 5, 4, 3, 48, 6, 2, 33, 53, 10 };
int K = 4;
// Function call
cout << "Kth Smallest Element is: "
<< kthSmallest(arr, N, K);
}
import java.util.PriorityQueue;
public class KthSmallestElement {
// Function to find the kth smallest array element
public static int kthSmallest(int[] arr, int N, int K) {
// Create a max heap (priority queue)
PriorityQueue<Integer> pq = new PriorityQueue<>((a, b) -> b - a);
// Iterate through the array elements
for (int i = 0; i < N; i++) {
// Push the current element onto the max heap
pq.offer(arr[i]);
// If the size of the max heap exceeds K, remove the largest element
if (pq.size() > K)
pq.poll();
}
// Return the Kth smallest element (top of the max heap)
return pq.peek();
}
// Driver's code:
public static void main(String[] args) {
int N = 10;
int[] arr = { 10, 5, 4, 3, 48, 6, 2, 33, 53, 10 };
int K = 4;
// Function call
System.out.println("Kth Smallest Element is: " + kthSmallest(arr, N, K));
}
}
import heapq
# Function to find the kth smallest array element
def kthSmallest(arr, K):
# Create a max heap (priority queue)
max_heap = []
# Iterate through the array elements
for num in arr:
# Push the negative of the current element onto the max heap
heapq.heappush(max_heap, -num)
# If the size of the max heap exceeds K, remove the largest element
if len(max_heap) > K:
heapq.heappop(max_heap)
# Return the Kth smallest element (top of the max heap, negated)
return -max_heap[0]
# Driver's code:
if __name__ == "__main__":
arr = [10, 5, 4, 3, 48, 6, 2, 33, 53, 10]
K = 4
# Function call
print("Kth Smallest Element is:", kthSmallest(arr, K))
using System;
using System.Collections.Generic;
public class KthSmallestElement
{
// Function to find the kth smallest array element
public static int KthSmallest(int[] arr, int K)
{
// Create a max heap (priority queue) using a SortedSet
var maxHeap = new SortedSet<int>(Comparer<int>.Create((a, b) => b.CompareTo(a)));
// Iterate through the array elements
foreach (var num in arr)
{
// Add the current element to the max heap
maxHeap.Add(-num);
// If the size of the max heap exceeds K, remove the largest element
if (maxHeap.Count > K)
maxHeap.Remove(maxHeap.Max);
}
// Return the Kth smallest element (top of the max heap)
return -maxHeap.Max;
}
// Driver's code:
public static void Main()
{
int[] arr = { 10, 5, 4, 3, 48, 6, 2, 33, 53, 10 };
int K = 4;
// Function call
Console.WriteLine("Kth Smallest Element is: " + KthSmallest(arr, K));
}
}
// Function to find the kth smallest array element
function kthSmallest(arr, K) {
// Create a max heap (priority queue)
let pq = new MaxHeap();
// Iterate through the array elements
for (let i = 0; i < arr.length; i++) {
// Push the current element onto the max heap
pq.push(arr[i]);
// If the size of the max heap exceeds K, remove the largest element
if (pq.size() > K)
pq.pop();
}
// Return the Kth smallest element (top of the max heap)
return pq.top();
}
// MaxHeap class definition
class MaxHeap {
constructor() {
this.heap = [];
}
push(val) {
this.heap.push(val);
this.heapifyUp(this.heap.length - 1);
}
pop() {
if (this.heap.length === 0) {
return null;
}
if (this.heap.length === 1) {
return this.heap.pop();
}
const root = this.heap[0];
this.heap[0] = this.heap.pop();
this.heapifyDown(0);
return root;
}
top() {
if (this.heap.length === 0) {
return null;
}
return this.heap[0];
}
size() {
return this.heap.length;
}
heapifyUp(index) {
while (index > 0) {
const parentIndex = Math.floor((index - 1) / 2);
if (this.heap[parentIndex] >= this.heap[index]) {
break;
}
this.swap(parentIndex, index);
index = parentIndex;
}
}
heapifyDown(index) {
const leftChildIndex = 2 * index + 1;
const rightChildIndex = 2 * index + 2;
let largestIndex = index;
if (
leftChildIndex < this.heap.length &&
this.heap[leftChildIndex] > this.heap[largestIndex]
) {
largestIndex = leftChildIndex;
}
if (
rightChildIndex < this.heap.length &&
this.heap[rightChildIndex] > this.heap[largestIndex]
) {
largestIndex = rightChildIndex;
}
if (index !== largestIndex) {
this.swap(index, largestIndex);
this.heapifyDown(largestIndex);
}
}
swap(i, j) {
[this.heap[i], this.heap[j]] = [this.heap[j], this.heap[i]];
}
}
// Driver's code:
const arr = [10, 5, 4, 3, 48, 6, 2, 33, 53, 10];
const K = 4;
// Function call
console.log("Kth Smallest Element is: " + kthSmallest(arr, K));
Output
Kth Smallest Element is: 5
Time Complexity: O(N * log(K)), The approach efficiently maintains a container of the K smallest elements while iterating through the array, ensuring a time complexity of O(N * log(K)), where N is the number of elements in the array.
Auxiliary Space: O(K)
K’th smallest element in an unsorted array using QuickSelect:
This is an optimization over method 1, if QuickSort is used as a sorting algorithm in first step. In QuickSort, pick a pivot element, then move the pivot element to its correct position and partition the surrounding array. The idea is, not to do complete quicksort, but stop at the point where pivot itself is k’th smallest element. Also, not to recur for both left and right sides of pivot, but recur for one of them according to the position of pivot.
Follow the given steps to solve the problem:
- Run quick sort algorithm on the input array
- In this algorithm pick a pivot element and move it to it’s correct position
- Now, if index of pivot is equal to K then return the value, else if the index of pivot is greater than K, then recur for the left subarray, else recur for the right subarray
- Repeat this process until the element at index K is not found
Below is the Implementation of the above approach:
// C++ code for the above approach
#include <bits/stdc++.h>
using namespace std;
int partition(int arr[], int l, int r);
// This function returns K'th smallest element in arr[l..r]
// using QuickSort based method. ASSUMPTION: ALL ELEMENTS IN
// ARR[] ARE DISTINCT
int kthSmallest(int arr[], int l, int r, int K)
{
// If k is smaller than number of elements in array
if (K > 0 && K <= r - l + 1) {
// Partition the array around last element and get
// position of pivot element in sorted array
int pos = partition(arr, l, r);
// If position is same as k
if (pos - l == K - 1)
return arr[pos];
if (pos - l > K - 1) // If position is more, recur
// for left subarray
return kthSmallest(arr, l, pos - 1, K);
// Else recur for right subarray
return kthSmallest(arr, pos + 1, r,
K - pos + l - 1);
}
// If k is more than number of elements in array
return INT_MAX;
}
void swap(int* a, int* b)
{
int temp = *a;
*a = *b;
*b = temp;
}
// Standard partition process of QuickSort(). It considers
// the last element as pivot and moves all smaller element
// to left of it and greater elements to right
int partition(int arr[], int l, int r)
{
int x = arr[r], i = l;
for (int j = l; j <= r - 1; j++) {
if (arr[j] <= x) {
swap(&arr[i], &arr[j]);
i++;
}
}
swap(&arr[i], &arr[r]);
return i;
}
// Driver's code
int main()
{
int arr[] = { 12, 3, 5, 7, 4, 19, 26 };
int N = sizeof(arr) / sizeof(arr[0]), K = 3;
// Function call
cout << "K'th smallest element is "
<< kthSmallest(arr, 0, N - 1, K);
return 0;
}
// C code for the above approach
#include <limits.h>
#include <stdio.h>
int partition(int arr[], int l, int r);
// This function returns K'th smallest element in arr[l..r]
// using QuickSort based method. ASSUMPTION: ALL ELEMENTS IN
// ARR[] ARE DISTINCT
int kthSmallest(int arr[], int l, int r, int K)
{
// If k is smaller than number of elements in array
if (K > 0 && K <= r - l + 1) {
// Partition the array around last element and get
// position of pivot element in sorted array
int pos = partition(arr, l, r);
// If position is same as k
if (pos - l == K - 1)
return arr[pos];
if (pos - l > K - 1) // If position is more, recur
// for left subarray
return kthSmallest(arr, l, pos - 1, K);
// Else recur for right subarray
return kthSmallest(arr, pos + 1, r,
K - pos + l - 1);
}
// If k is more than number of elements in array
return INT_MAX;
}
void swap(int* a, int* b)
{
int temp = *a;
*a = *b;
*b = temp;
}
// Standard partition process of QuickSort(). It considers
// the last element as pivot and moves all smaller element
// to left of it and greater elements to right
int partition(int arr[], int l, int r)
{
int x = arr[r], i = l;
for (int j = l; j <= r - 1; j++) {
if (arr[j] <= x) {
swap(&arr[i], &arr[j]);
i++;
}
}
swap(&arr[i], &arr[r]);
return i;
}
// Driver's code
int main()
{
int arr[] = { 12, 3, 5, 7, 4, 19, 26 };
int N = sizeof(arr) / sizeof(arr[0]), K = 3;
// Function call
printf("K'th smallest element is %d",
kthSmallest(arr, 0, N - 1, K));
return 0;
}
// Java code for kth smallest element in an array
import java.util.Arrays;
import java.util.Collections;
class GFG {
// Standard partition process of QuickSort.
// It considers the last element as pivot
// and moves all smaller element to left of
// it and greater elements to right
public static int partition(Integer[] arr, int l, int r)
{
int x = arr[r], i = l;
for (int j = l; j <= r - 1; j++) {
if (arr[j] <= x) {
// Swapping arr[i] and arr[j]
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i++;
}
}
// Swapping arr[i] and arr[r]
int temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
return i;
}
// This function returns k'th smallest element
// in arr[l..r] using QuickSort based method.
// ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
public static int kthSmallest(Integer[] arr, int l,
int r, int K)
{
// If k is smaller than number of elements
// in array
if (K > 0 && K <= r - l + 1) {
// Partition the array around last
// element and get position of pivot
// element in sorted array
int pos = partition(arr, l, r);
// If position is same as k
if (pos - l == K - 1)
return arr[pos];
// If position is more, recur for
// left subarray
if (pos - l > K - 1)
return kthSmallest(arr, l, pos - 1, K);
// Else recur for right subarray
return kthSmallest(arr, pos + 1, r,
K - pos + l - 1);
}
// If k is more than number of elements
// in array
return Integer.MAX_VALUE;
}
// Driver's code
public static void main(String[] args)
{
Integer arr[]
= new Integer[] { 12, 3, 5, 7, 4, 19, 26 };
int K = 3;
// Function call
System.out.print(
"K'th smallest element is "
+ kthSmallest(arr, 0, arr.length - 1, K));
}
}
// This code is contributed by Chhavi
# Python3 code for the above approach
# This function returns k'th smallest element
# in arr[l..r] using QuickSort based method.
# ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
import sys
def kthSmallest(arr, l, r, K):
# If k is smaller than number of
# elements in array
if (K > 0 and K <= r - l + 1):
# Partition the array around last
# element and get position of pivot
# element in sorted array
pos = partition(arr, l, r)
# If position is same as k
if (pos - l == K - 1):
return arr[pos]
if (pos - l > K - 1): # If position is more,
# recur for left subarray
return kthSmallest(arr, l, pos - 1, K)
# Else recur for right subarray
return kthSmallest(arr, pos + 1, r,
K - pos + l - 1)
# If k is more than number of
# elements in array
return sys.maxsize
# Standard partition process of QuickSort().
# It considers the last element as pivot and
# moves all smaller element to left of it
# and greater elements to right
def partition(arr, l, r):
x = arr[r]
i = l
for j in range(l, r):
if (arr[j] <= x):
arr[i], arr[j] = arr[j], arr[i]
i += 1
arr[i], arr[r] = arr[r], arr[i]
return i
# Driver's Code
if __name__ == "__main__":
arr = [12, 3, 5, 7, 4, 19, 26]
N = len(arr)
K = 3
print("K'th smallest element is",
kthSmallest(arr, 0, N - 1, K))
# This code is contributed by ita_c
// C# code for kth smallest element
// in an array
using System;
class GFG {
// Standard partition process of QuickSort.
// It considers the last element as pivot
// and moves all smaller element to left of
// it and greater elements to right
public static int partition(int[] arr, int l, int r)
{
int x = arr[r], i = l;
int temp = 0;
for (int j = l; j <= r - 1; j++) {
if (arr[j] <= x) {
// Swapping arr[i] and arr[j]
temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i++;
}
}
// Swapping arr[i] and arr[r]
temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
return i;
}
// This function returns k'th smallest
// element in arr[l..r] using QuickSort
// based method. ASSUMPTION: ALL ELEMENTS
// IN ARR[] ARE DISTINCT
public static int kthSmallest(int[] arr, int l, int r,
int K)
{
// If k is smaller than number
// of elements in array
if (K > 0 && K <= r - l + 1) {
// Partition the array around last
// element and get position of pivot
// element in sorted array
int pos = partition(arr, l, r);
// If position is same as k
if (pos - l == K - 1)
return arr[pos];
// If position is more, recur for
// left subarray
if (pos - l > K - 1)
return kthSmallest(arr, l, pos - 1, K);
// Else recur for right subarray
return kthSmallest(arr, pos + 1, r,
K - pos + l - 1);
}
// If k is more than number
// of elements in array
return int.MaxValue;
}
// Driver's Code
public static void Main()
{
int[] arr = { 12, 3, 5, 7, 4, 19, 26 };
int K = 3;
// Function call
Console.Write(
"K'th smallest element is "
+ kthSmallest(arr, 0, arr.Length - 1, K));
}
}
// This code is contributed
// by 29AjayKumar
// JavaScript code for kth smallest
// element in an array
// Standard partition process of QuickSort.
// It considers the last element as pivot
// and moves all smaller element to left of
// it and greater elements to right
function partition( arr , l , r)
{
var x = arr[r], i = l;
for (j = l; j <= r - 1; j++) {
if (arr[j] <= x) {
// Swapping arr[i] and arr[j]
var temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i++;
}
}
// Swapping arr[i] and arr[r]
var temp = arr[i];
arr[i] = arr[r];
arr[r] = temp;
return i;
}
// This function returns k'th smallest element
// in arr[l..r] using QuickSort based method.
// ASSUMPTION: ALL ELEMENTS IN ARR ARE DISTINCT
function kthSmallest( arr , l , r , k) {
// If k is smaller than number of elements
// in array
if (k > 0 && k <= r - l + 1) {
// Partition the array around last
// element and get position of pivot
// element in sorted array
var pos = partition(arr, l, r);
// If position is same as k
if (pos - l == k - 1)
return arr[pos];
// If position is more, recur for
// left subarray
if (pos - l > k - 1)
return kthSmallest(arr, l, pos - 1, k);
// Else recur for right subarray
return kthSmallest(arr, pos + 1, r,
k - pos + l - 1);
}
// If k is more than number of elements
// in array
return Number.MAX_VALUE;
}
// Driver program to test above methods
var arr = [ 12, 3, 5, 7, 4, 19, 26 ];
var k = 3;
console.log("K'th smallest element is " +
kthSmallest(arr, 0, arr.length - 1, k));
// This code contributed by Rajput-Ji
Output
K'th smallest element is 5
Time Complexity: O(N2) in worst case and O(N) on average. However if we randomly choose pivots, the probability of worst case could become very less.
Auxiliary Space: O(N)
K’th smallest element in an unsorted array using Counting Sort:
Counting sort is a linear time sorting algorithm that counts the occurrences of each element in an array and uses this information to determine the sorted order. The intuition behind using counting sort to find the kth smallest element is to take advantage of its counting phase, which essentially calculates the cumulative frequencies of elements. By tracking these cumulative frequencies and finding the point where the count reaches or exceeds K can determine the kth smallest element efficiently.
- Find the maximum element in the input array to determine the range of elements.
- Create an array freq of size max_element + 1 to store the frequency of each element in the input array. Initialize all elements of freq to 0.
- Iterate through the input array and update the frequencies of elements in the freq array.
- Initialize a count variable to keep track of the cumulative frequency of elements.
- Iterate through the freq array from 0 to max_element:
- If the frequency of the current element is non-zero, add it to the count.
- Check if count is greater than or equal to k. If it is, return the current element as the kth smallest element.
Below is the Implementation of the above approach:
#include <iostream>
using namespace std;
// This function returns the kth smallest element in an array
int kthSmallest(int arr[], int n, int k) {
// First, find the maximum element in the array
int max_element = arr[0];
for (int i = 1; i < n; i++) {
if (arr[i] > max_element) {
max_element = arr[i];
}
}
// Create an array to store the frequency of each
// element in the input array
int freq[max_element + 1] = {0};
for (int i = 0; i < n; i++) {
freq[arr[i]]++;
}
// Keep track of the cumulative frequency of elements
// in the input array
int count = 0;
for (int i = 0; i <= max_element; i++) {
if (freq[i] != 0) {
count += freq[i];
if (count >= k) {
// If we have seen k or more elements,
// return the current element
return i;
}
}
}
return -1;
}
// Driver Code
int main() {
int arr[] = {12,3,5,7,19};
int n = sizeof(arr) / sizeof(arr[0]);
int k = 2;
cout << "The " << k << "th smallest element is " << kthSmallest(arr, n, k) << endl;
return 0;
}
import java.util.Arrays;
public class GFG {
// This function returns the kth smallest element in an
// array
static int kthSmallest(int[] arr, int n, int k)
{
// First, find the maximum element in the array
int max_element = arr[0];
for (int i = 1; i < n; i++) {
if (arr[i] > max_element) {
max_element = arr[i];
}
}
// Create an array to store the frequency of each
// element in the input array
int[] freq = new int[max_element + 1];
Arrays.fill(freq, 0);
for (int i = 0; i < n; i++) {
freq[arr[i]]++;
}
// Keep track of the cumulative frequency of
// elements in the input array
int count = 0;
for (int i = 0; i <= max_element; i++) {
if (freq[i] != 0) {
count += freq[i];
if (count >= k) {
// If we have seen k or more elements,
// return the current element
return i;
}
}
}
return -1;
}
// Driver Code
public static void main(String[] args)
{
int[] arr = { 12, 3, 5, 7, 19 };
int n = arr.length;
int k = 2;
System.out.println("The " + k
+ "th smallest element is "
+ kthSmallest(arr, n, k));
}
}
// This code is contributed by akshitaguprzj3
# Python3 code for kth smallest element in an array
# function returns the kth smallest element in an array
def kth_smallest(arr, k):
# First, find the maximum element in the array
max_element = max(arr)
# Create a dictionary to store the frequency of each
# element in the input array
freq = {}
for num in arr:
freq[num] = freq.get(num, 0) + 1
# Keep track of the cumulative frequency of elements
# in the input array
count = 0
for i in range(max_element + 1):
if i in freq:
count += freq[i]
if count >= k:
# If we have seen k or more elements,
# return the current element
return i
return -1
# Driver Code
arr = [12, 3, 5, 7, 19]
k = 2
print("The", k,"th smallest element is", kth_smallest(arr, k))
using System;
public class GFG {
// This function returns the kth smallest element in an array
static int KthSmallest(int[] arr, int n, int k) {
// First, find the maximum element in the array
int maxElement = arr[0];
for (int i = 1; i < n; i++) {
if (arr[i] > maxElement) {
maxElement = arr[i];
}
}
// Create an array to store the frequency of each
// element in the input array
int[] freq = new int[maxElement + 1];
for (int i = 0; i < n; i++) {
freq[arr[i]]++;
}
// Keep track of the cumulative frequency of elements
// in the input array
int count = 0;
for (int i = 0; i <= maxElement; i++) {
if (freq[i] != 0) {
count += freq[i];
if (count >= k) {
// If we have seen k or more elements,
// return the current element
return i;
}
}
}
return -1;
}
// Driver Code
static void Main(string[] args) {
int[] arr = { 12, 3, 5, 7, 19 };
int n = arr.Length;
int k = 2;
Console.WriteLine("The " + k + "th smallest element is " + KthSmallest(arr, n, k));
}
}
// Function to find the kth smallest element in an array
function kthSmallest(arr, k) {
// First, find the maximum element in the array
let maxElement = arr[0];
for (let i = 1; i < arr.length; i++) {
if (arr[i] > maxElement) {
maxElement = arr[i];
}
}
// Create an array to store the frequency of each element in the input array
let freq = new Array(maxElement + 1).fill(0);
for (let i = 0; i < arr.length; i++) {
freq[arr[i]]++;
}
// Keep track of the cumulative frequency of elements in the input array
let count = 0;
for (let i = 0; i <= maxElement; i++) {
if (freq[i] !== 0) {
count += freq[i];
if (count >= k) {
// If we have seen k or more elements, return the current element
return i;
}
}
}
return -1; // kth smallest element not found
}
// Driver code
const arr = [12, 3, 5, 7, 19];
const k = 2;
console.log(`The ${k}th smallest element is ${kthSmallest(arr, k)}`);
Output
The 2th smallest element is 5
Time Complexity:O(N + max_element), where max_element is the maximum element of the array.
Auxiliary Space: O(max_element)
Note: This approach is particularly useful when the range of elements is small, this is because we are declaring a array of size maximum element. If the range of elements is very large, the counting sort approach may not be the most efficient choice.
Related Articles:
Print k largest elements of an array