Open In App

Range Minimum Query (Square Root Decomposition and Sparse Table)

Last Updated : 25 Aug, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

We have an array arr[0 . . . n-1]. We should be able to efficiently find the minimum value from index L (query start) to R (query end) where 0 <= L <= R <= n-1. Consider a situation when there are many range queries. 
Example: 

Input:  arr[]   = {7, 2, 3, 0, 5, 10, 3, 12, 18};
query[] = [0, 4], [4, 7], [7, 8]

Output: Minimum of [0, 4] is 0
Minimum of [4, 7] is 3
Minimum of [7, 8] is 12

A simple solution is to run a loop from L to R and find the minimum element in the given range. This solution takes O(n) time to query in the worst case.
Another approach is to use Segment tree. With segment tree, preprocessing time is O(n) and time to for range minimum query is O(Logn). The extra space required is O(n) to store the segment tree. Segment tree allows updates also in O(Log n) time. 

Can we do better if we know that the array is static?

How to optimize query time when there are no update operations and there are many range minimum queries?
Below are different methods.

Method 1 (Simple Solution) 
A Simple Solution is to create a 2D array lookup[][] where an entry lookup[i][j] stores the minimum value in range arr[i..j]. The minimum of a given range can now be calculated in O(1) time.
 

rmqsimple

C++




// C++ program to do range
// minimum query in O(1) time with
// O(n*n) extra space and O(n*n)
// preprocessing time.
#include <bits/stdc++.h>
using namespace std;
#define MAX 500
 
// lookup[i][j] is going to store
// index of minimum value in
// arr[i..j]
int lookup[MAX][MAX];
 
// Structure to represent a query range
struct Query {
    int L, R;
};
 
// Fills lookup array lookup[n][n]
// for all possible values
// of query ranges
void preprocess(int arr[], int n)
{
    // Initialize lookup[][] for the
    // intervals with length 1
    for (int i = 0; i < n; i++)
        lookup[i][i] = i;
 
    // Fill rest of the entries in bottom up manner
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++)
 
            // To find minimum of [0,4],
            // we compare minimum
            // of arr[lookup[0][3]] with arr[4].
            if (arr[lookup[i][j - 1]] < arr[j])
                lookup[i][j] = lookup[i][j - 1];
            else
                lookup[i][j] = j;
    }
}
 
// Prints minimum of given m
// query ranges in arr[0..n-1]
void RMQ(int arr[], int n, Query q[], int m)
{
    // Fill lookup table for
    // all possible input queries
    preprocess(arr, n);
 
    // One by one compute sum of all queries
    for (int i = 0; i < m; i++)
    {
        // Left and right boundaries
        // of current range
        int L = q[i].L, R = q[i].R;
 
        // Print sum of current query range
        cout << "Minimum of [" << L
             << ", " << R << "] is "
             << arr[lookup[L][R]] << endl;
    }
}
 
// Driver code
int main()
{
    int a[] = { 7, 2, 3, 0, 5, 10, 3, 12, 18 };
    int n = sizeof(a) / sizeof(a[0]);
    Query q[] = { { 0, 4 }, { 4, 7 }, { 7, 8 } };
    int m = sizeof(q) / sizeof(q[0]);
    RMQ(a, n, q, m);
    return 0;
}


Java




// Java program to do range minimum query
// in O(1) time with O(n*n) extra space
// and O(n*n) preprocessing time.
import java.util.*;
 
class GFG {
    static int MAX = 500;
 
    // lookup[i][j] is going to store index of
    // minimum value in arr[i..j]
    static int[][] lookup = new int[MAX][MAX];
 
    // Structure to represent a query range
    static class Query {
        int L, R;
 
        public Query(int L, int R)
        {
            this.L = L;
            this.R = R;
        }
    };
 
    // Fills lookup array lookup[n][n] for
    // all possible values of query ranges
    static void preprocess(int arr[], int n)
    {
        // Initialize lookup[][] for
        // the intervals with length 1
        for (int i = 0; i < n; i++)
            lookup[i][i] = i;
 
        // Fill rest of the entries in bottom up manner
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++)
 
                // To find minimum of [0,4],
                // we compare minimum of
                // arr[lookup[0][3]] with arr[4].
                if (arr[lookup[i][j - 1]] < arr[j])
                    lookup[i][j] = lookup[i][j - 1];
                else
                    lookup[i][j] = j;
        }
    }
 
    // Prints minimum of given m query
    // ranges in arr[0..n-1]
    static void RMQ(int arr[], int n, Query q[], int m)
    {
        // Fill lookup table for
        // all possible input queries
        preprocess(arr, n);
 
        // One by one compute sum of all queries
        for (int i = 0; i < m; i++) {
            // Left and right boundaries
            // of current range
            int L = q[i].L, R = q[i].R;
 
            // Print sum of current query range
            System.out.println("Minimum of [" + L + ", " + R
                               + "] is "
                               + arr[lookup[L][R]]);
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int a[] = { 7, 2, 3, 0, 5, 10, 3, 12, 18 };
        int n = a.length;
        Query q[] = { new Query(0, 4), new Query(4, 7),
                      new Query(7, 8) };
        int m = q.length;
        RMQ(a, n, q, m);
    }
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program to do range
# minimum query in O(1) time with
# O(n*n) extra space and O(n*n)
# preprocessing time.
MAX = 500
  
# lookup[i][j] is going to store
# index of minimum value in
# arr[i..j]
lookup = [[0 for j in range(MAX)]
             for i in range(MAX)]
  
# Structure to represent
# a query range
class Query:
     
    def __init__(self, L, R):
         
        self.L = L
        self.R = R
  
# Fills lookup array lookup[n][n]
# for all possible values
# of query ranges
def preprocess(arr, n):
 
    # Initialize lookup[][] for the
    # intervals with length 1
    for i in range(n):
        lookup[i][i] = i;
  
    # Fill rest of the entries in
    # bottom up manner
    for i in range(n):
        for j in range(i + 1, n):
  
            # To find minimum of [0,4],
            # we compare minimum
            # of arr[lookup[0][3]] with arr[4].
            if (arr[lookup[i][j - 1]] < arr[j]):
                lookup[i][j] = lookup[i][j - 1];
            else:
                lookup[i][j] = j;   
  
# Prints minimum of given m
# query ranges in arr[0..n-1]
def RMQ(arr, n, q, m):
 
    # Fill lookup table for
    # all possible input queries
    preprocess(arr, n);
  
    # One by one compute sum of
    # all queries
    for i in range(m):
 
        # Left and right boundaries
        # of current range
        L = q[i].L
        R = q[i].R;
  
        # Print sum of current query range
        print("Minimum of [" + str(L) + ", " +
               str(R) + "] is " +
               str(arr[lookup[L][R]]))
 
# Driver code
if __name__ == "__main__":
     
    a = [7, 2, 3, 0, 5,
         10, 3, 12, 18]
    n = len(a)   
    q = [Query(0, 4),
         Query(4, 7),
         Query(7, 8)]   
    m = len(q)   
    RMQ(a, n, q, m);
  
# This code is contributed by Rutvik_56


C#




// C# program to do range minimum query
// in O(1) time with O(n*n) extra space
// and O(n*n) preprocessing time.
using System;
 
class GFG {
    static int MAX = 500;
 
    // lookup[i][j] is going to store index of
    // minimum value in arr[i..j]
    static int[, ] lookup = new int[MAX, MAX];
 
    // Structure to represent a query range
    public class Query {
        public int L, R;
 
        public Query(int L, int R)
        {
            this.L = L;
            this.R = R;
        }
    };
 
    // Fills lookup array lookup[n][n] for
    // all possible values of query ranges
    static void preprocess(int[] arr, int n)
    {
        // Initialize lookup[][] for
        // the intervals with length 1
        for (int i = 0; i < n; i++)
            lookup[i, i] = i;
 
        // Fill rest of the entries in bottom up manner
        for (int i = 0; i < n; i++)
        {
            for (int j = i + 1; j < n; j++)
 
                // To find minimum of [0,4],
                // we compare minimum of
                // arr[lookup[0][3]] with arr[4].
                if (arr[lookup[i, j - 1]] < arr[j])
                    lookup[i, j] = lookup[i, j - 1];
                else
                    lookup[i, j] = j;
        }
    }
 
    // Prints minimum of given m query
    // ranges in arr[0..n-1]
    static void RMQ(int[] arr, int n, Query[] q, int m)
    {
        // Fill lookup table for
        // all possible input queries
        preprocess(arr, n);
 
        // One by one compute sum of all queries
        for (int i = 0; i < m; i++) {
            // Left and right boundaries
            // of current range
            int L = q[i].L, R = q[i].R;
 
            // Print sum of current query range
            Console.WriteLine("Minimum of [" + L + ", " + R
                              + "] is "
                              + arr[lookup[L, R]]);
        }
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        int[] a = { 7, 2, 3, 0, 5, 10, 3, 12, 18 };
        int n = a.Length;
        Query[] q = { new Query(0, 4), new Query(4, 7),
                      new Query(7, 8) };
        int m = q.Length;
        RMQ(a, n, q, m);
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
// Javascript program to do range minimum query
// in O(1) time with O(n*n) extra space
// and O(n*n) preprocessing time
let MAX = 500;
 
// lookup[i][j] is going to store index of
// minimum value in arr[i..j]
let lookup = new Array(MAX);
for(let i = 0; i < MAX; i++)
{
    lookup[i] = new Array(MAX);
    for(let j = 0; j < MAX; j++)
        lookup[i][j] = 0;
}
 
// Structure to represent a query range
class Query
{
    constructor(L, R)
    {
        this.L = L;
            this.R = R;
    }
}
 
 // Fills lookup array lookup[n][n] for
    // all possible values of query ranges
function preprocess(arr, n)
{
 
    // Initialize lookup[][] for
        // the intervals with length 1
        for (let i = 0; i < n; i++)
            lookup[i][i] = i;
  
        // Fill rest of the entries in bottom up manner
        for (let i = 0; i < n; i++) {
            for (let j = i + 1; j < n; j++)
  
                // To find minimum of [0,4],
                // we compare minimum of
                // arr[lookup[0][3]] with arr[4].
                if (arr[lookup[i][j - 1]] < arr[j])
                    lookup[i][j] = lookup[i][j - 1];
                else
                    lookup[i][j] = j;
        }
}
 
// Prints minimum of given m query
// ranges in arr[0..n-1]
function RMQ(arr,n,q,m)
{
    // Fill lookup table for
        // all possible input queries
        preprocess(arr, n);
  
        // One by one compute sum of all queries
        for (let i = 0; i < m; i++)
        {
         
            // Left and right boundaries
            // of current range
            let L = q[i].L, R = q[i].R;
  
            // Print sum of current query range
            document.write("Minimum of [" + L + ", " + R
                               + "] is "
                               + arr[lookup[L][R]]+"<br>");
        }
}
 
// Driver Code
let a=[7, 2, 3, 0, 5, 10, 3, 12, 18];
let n = a.length;
let q = [ new Query(0, 4), new Query(4, 7),
new Query(7, 8) ];
let m = q.length;
RMQ(a, n, q, m);
 
// This code is contributed by avanitrachhadiya2155
</script>


Output: 

Minimum of [0, 4] is 0
Minimum of [4, 7] is 3
Minimum of [7, 8] is 12

This approach supports queries in O(1), but preprocessing takes O(n2) time. Also, this approach needs O(n2) extra space which may become huge for large input arrays.

Method 2 (Square Root Decomposition) 
We can use Square Root Decompositions to reduce space required in the above method.
Preprocessing: 
1) Divide the range [0, n-1] into different blocks of ?n each. 
2) Compute the minimum of every block of size ?n and store the results.
Preprocessing takes O(?n * ?n) = O(n) time and O(?n) space.
 

rmq3

Query: 
1) To query a range [L, R], we take a minimum of all blocks that lie in this range. For left and right corner blocks which may partially overlap with the given range, we linearly scan them to find the minimum. 
The time complexity of the query is O(?n). Note that we have a minimum of the middle block directly accessible and there can be at most O(?n) middle blocks. There can be at most two corner blocks that we may have to scan, so we may have to scan 2*O(?n) elements of corner blocks. Therefore, the overall time complexity is O(?n).
Refer to Sqrt (or Square Root) Decomposition Technique | Set 1 (Introduction) for details.

Method 3 (Sparse Table Algorithm) 
The above solution requires only O(?n) space but takes O(?n) time to query. The sparse table method supports query time O(1) with extra space O(n Log n).
The idea is to precompute a minimum of all subarrays of size 2j where j varies from 0 to Log n. Like method 1, we make a lookup table. Here lookup[i][j] contains a minimum of range starting from i and of size 2j. For example lookup[0][3] contains a minimum of range [0, 7] (starting with 0 and of size 23)

Preprocessing: 
How to fill this lookup table? The idea is simple, fill in a bottom-up manner using previously computed values. 
For example, to find a minimum of range [0, 7], we can use a minimum of the following two. 
a) Minimum of range [0, 3] 
b) Minimum of range [4, 7]
Based on the above example, below is the formula, 

// If arr[lookup[0][2]] <=  arr[lookup[4][2]], 
// then lookup[0][3] = lookup[0][2]
If arr[lookup[i][j-1]] <= arr[lookup[i+2j-1][j-1]]
lookup[i][j] = lookup[i][j-1]

// If arr[lookup[0][2]] > arr[lookup[4][2]],
// then lookup[0][3] = lookup[4][2]
Else
lookup[i][j] = lookup[i+2j-1][j-1]

rmqsparsetable

Query: 
For any arbitrary range [l, R], we need to use ranges that are in powers of 2. The idea is to use the closest power of 2. We always need to do at most one comparison (compare a minimum of two ranges which are powers of 2). One range starts with L and ends with “L + closest-power-of-2”. The other range ends at R and starts with “R – same-closest-power-of-2 + 1”. For example, if the given range is (2, 10), we compare a minimum of two ranges (2, 9) and (3, 10). 
Based on the above example, below is the formula, 

// For (2,10), j = floor(Log2(10-2+1)) = 3
j = floor(Log(R-L+1))

// If arr[lookup[0][3]] <= arr[lookup[3][3]],
// then RMQ(2,10) = lookup[0][3]
If arr[lookup[L][j]] <= arr[lookup[R-(int)pow(2,j)+1][j]]
RMQ(L, R) = lookup[L][j]

// If arr[lookup[0][3]] > arr[lookup[3][3]],
// then RMQ(2,10) = lookup[3][3]
Else
RMQ(L, R) = lookup[R-(int)pow(2,j)+1][j]

Since we do only one comparison, the time complexity of the query is O(1).

Below is the implementation of the above idea. 

C++




// C++ program to do range minimum
// query in O(1) time with
// O(n Log n) extra space and
// O(n Log n) preprocessing time
#include <bits/stdc++.h>
using namespace std;
#define MAX 500
 
// lookup[i][j] is going to
// store index of minimum value in
// arr[i..j]. Ideally lookup
// table size should not be fixed
// and should be determined using
// n Log n. It is kept
// constant to keep code simple.
int lookup[MAX][MAX];
 
// Structure to represent a query range
struct Query {
    int L, R;
};
 
// Fills lookup array
// lookup[][] in bottom up manner.
void preprocess(int arr[], int n)
{
    // Initialize M for the
    // intervals with length 1
    for (int i = 0; i < n; i++)
        lookup[i][0] = i;
 
    // Compute values from smaller
    // to bigger intervals
    for (int j = 1; (1 << j) <= n; j++)
    {
        // Compute minimum value for
        // all intervals with size
        // 2^j
        for (int i = 0; (i + (1 << j) - 1) < n; i++)
        {
            // For arr[2][10], we
            // compare arr[lookup[0][3]]
            // and arr[lookup[3][3]]
            if (arr[lookup[i][j - 1]]
                < arr[lookup[i + (1 << (j - 1))][j - 1]])
                lookup[i][j] = lookup[i][j - 1];
            else
                lookup[i][j]
                    = lookup[i + (1 << (j - 1))][j - 1];
        }
    }
}
 
// Returns minimum of arr[L..R]
int query(int arr[], int L, int R)
{
    // For [2,10], j = 3
    int j = (int)log2(R - L + 1);
 
    // For [2,10], we compare arr[lookup[0][3]] and
    // arr[lookup[3][3]],
    if (arr[lookup[L][j]]
        <= arr[lookup[R - (1 << j) + 1][j]])
        return arr[lookup[L][j]];
 
    else
        return arr[lookup[R - (1 << j) + 1][j]];
}
 
// Prints minimum of given
// m query ranges in arr[0..n-1]
void RMQ(int arr[], int n, Query q[], int m)
{
    // Fills table lookup[n][Log n]
    preprocess(arr, n);
 
    // One by one compute sum of all queries
    for (int i = 0; i < m; i++)
    {
        // Left and right boundaries
        // of current range
        int L = q[i].L, R = q[i].R;
 
        // Print sum of current query range
        cout << "Minimum of [" << L << ", "
             << R << "] is "
             << query(arr, L, R) << endl;
    }
}
 
// Driver code
int main()
{
    int a[] = { 7, 2, 3, 0, 5, 10, 3, 12, 18 };
    int n = sizeof(a) / sizeof(a[0]);
    Query q[] = { { 0, 4 }, { 4, 7 }, { 7, 8 } };
    int m = sizeof(q) / sizeof(q[0]);
    RMQ(a, n, q, m);
    return 0;
}


Java




// Java program to do range minimum query
// in O(1) time with O(n Log n) extra space
// and O(n Log n) preprocessing time
import java.util.*;
 
class GFG {
 
    static int MAX = 500;
 
    // lookup[i][j] is going to store index
    // of minimum value in arr[i..j].
    // Ideally lookup table size should not be fixed
    // and should be determined using n Log n.
    // It is kept constant to keep code simple.
    static int[][] lookup = new int[MAX][MAX];
 
    // Structure to represent a query range
    static class Query {
        int L, R;
 
        public Query(int L, int R)
        {
            this.L = L;
            this.R = R;
        }
    };
 
    // Fills lookup array lookup[][]
    // in bottom up manner.
    static void preprocess(int arr[], int n)
    {
        // Initialize M for the intervals
        // with length 1
        for (int i = 0; i < n; i++)
            lookup[i][0] = i;
 
        // Compute values from smaller
        // to bigger intervals
        for (int j = 1; (1 << j) <= n; j++)
        {
            // Compute minimum value for
            // all intervals with size 2^j
            for (int i = 0;
                 (i + (1 << j) - 1) < n;
                 i++)
            {
                // For arr[2][10], we compare
                // arr[lookup[0][3]]
                // and arr[lookup[3][3]]
                if (arr[lookup[i][j - 1]]
                    < arr[lookup[i + (1 << (j - 1))]
                                [j - 1]])
                    lookup[i][j] = lookup[i][j - 1];
                else
                    lookup[i][j]
                        = lookup[i + (1 << (j - 1))][j - 1];
            }
        }
    }
 
    // Returns minimum of arr[L..R]
    static int query(int arr[], int L, int R)
    {
        // For [2,10], j = 3
        int j = (int)(Math.log(R - L + 1) / Math.log(2));
 
        // For [2,10], we compare
        // arr[lookup[0][3]]
        // and arr[lookup[3][3]],
        if (arr[lookup[L][j]]
            <= arr[lookup[R - (1 << j) + 1][j]])
            return arr[lookup[L][j]];
 
        else
            return arr[lookup[R - (1 << j) + 1][j]];
    }
 
    // Prints minimum of given m
    // query ranges in arr[0..n-1]
    static void RMQ(int arr[], int n,
                    Query q[], int m)
    {
        // Fills table lookup[n][Log n]
        preprocess(arr, n);
 
        // One by one compute sum of all queries
        for (int i = 0; i < m; i++)
        {
            // Left and right boundaries
            // of current range
            int L = q[i].L, R = q[i].R;
 
            // Print sum of current query range
            System.out.println("Minimum of ["
                                
                               + L + ", " + R
                               + "] is "
                               + query(arr, L, R));
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int a[] = { 7, 2, 3, 0, 5, 10, 3, 12, 18 };
        int n = a.length;
        Query q[] = { new Query(0, 4), new Query(4, 7),
                      new Query(7, 8) };
        int m = q.length;
        RMQ(a, n, q, m);
    }
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 program to do range minimum query
# in O(1) time with O(n Log n) extra space
# and O(n Log n) preprocessing time
from math import log2
 
MAX = 500
 
# lookup[i][j] is going to store index of
# minimum value in arr[i..j].
# Ideally lookup table size should
# not be fixed and should be determined
# using n Log n. It is kept constant
# to keep code simple.
lookup = [[0 for i in range(500)]
          for j in range(500)]
 
# Structure to represent a query range
 
 
class Query:
    def __init__(self, l, r):
        self.L = l
        self.R = r
 
# Fills lookup array lookup[][]
# in bottom up manner.
 
 
def preprocess(arr: list, n: int):
    global lookup
 
    # Initialize M for the
    # intervals with length 1
    for i in range(n):
        lookup[i][0] = i
 
    # Compute values from
    # smaller to bigger intervals
    j = 1
    while (1 << j) <= n:
 
        # Compute minimum value for
        # all intervals with size 2^j
        i = 0
        while i + (1 << j) - 1 < n:
 
            # For arr[2][10], we compare
            # arr[lookup[0][3]] and
            # arr[lookup[3][3]]
            if (arr[lookup[i][j - 1]] <
                    arr[lookup[i + (1 << (j - 1))][j - 1]]):
                lookup[i][j] = lookup[i][j - 1]
            else:
                lookup[i][j] = lookup[i +
                                      (1 << (j - 1))][j - 1]
 
            i += 1
        j += 1
 
# Returns minimum of arr[L..R]
 
 
def query(arr: list, L: int, R: int) -> int:
    global lookup
 
    # For [2,10], j = 3
    j = int(log2(R - L + 1))
 
    # For [2,10], we compare
    # arr[lookup[0][3]] and
    # arr[lookup[3][3]],
    if (arr[lookup[L][j]] <=
            arr[lookup[R - (1 << j) + 1][j]]):
        return arr[lookup[L][j]]
    else:
        return arr[lookup[R - (1 << j) + 1][j]]
 
# Prints minimum of given
# m query ranges in arr[0..n-1]
 
 
def RMQ(arr: list, n: int, q: list, m: int):
 
    # Fills table lookup[n][Log n]
    preprocess(arr, n)
 
    # One by one compute sum of all queries
    for i in range(m):
 
        # Left and right boundaries
        # of current range
        L = q[i].L
        R = q[i].R
 
        # Print sum of current query range
        print("Minimum of [%d, %d] is %d" %
              (L, R, query(arr, L, R)))
 
 
# Driver Code
if __name__ == "__main__":
    a = [7, 2, 3, 0, 5, 10, 3, 12, 18]
    n = len(a)
    q = [Query(0, 4), Query(4, 7),
         Query(7, 8)]
    m = len(q)
 
    RMQ(a, n, q, m)
 
# This code is contributed by
# sanjeev2552


C#




// C# program to do range minimum query
// in O(1) time with O(n Log n) extra space
// and O(n Log n) preprocessing time
using System;
 
class GFG {
 
    static int MAX = 500;
 
    // lookup[i,j] is going to store index
    // of minimum value in arr[i..j].
    // Ideally lookup table size should not be fixed
    // and should be determined using n Log n.
    // It is kept constant to keep code simple.
    static int[, ] lookup = new int[MAX, MAX];
 
    // Structure to represent a query range
    public class Query {
        public int L, R;
 
        public Query(int L, int R)
        {
            this.L = L;
            this.R = R;
        }
    };
 
    // Fills lookup array lookup[,]
    // in bottom up manner.
    static void preprocess(int[] arr, int n)
    {
        // Initialize M for the intervals
        // with length 1
        for (int i = 0; i < n; i++)
            lookup[i, 0] = i;
 
        // Compute values from smaller
        // to bigger intervals
        for (int j = 1; (1 << j) <= n; j++)
        {
            // Compute minimum value for
            // all intervals with size 2^j
            for (int i = 0;
                 (i + (1 << j) - 1) < n;
                 i++)
            {
                // For arr[2,10], we compare
                // arr[lookup[0,3]] and arr[lookup[3,3]]
                if (arr[lookup[i, j - 1]]
                    < arr[lookup[i + (1 << (j - 1)),
                                 j - 1]])
                    lookup[i, j] = lookup[i, j - 1];
                else
                    lookup[i, j]
                        = lookup[i + (1 << (j - 1)), j - 1];
            }
        }
    }
 
    // Returns minimum of arr[L..R]
    static int query(int[] arr, int L, int R)
    {
        // For [2,10], j = 3
        int j = (int)Math.Log(R - L + 1);
 
        // For [2,10], we compare arr[lookup[0,3]]
        // and arr[lookup[3,3]],
        if (arr[lookup[L, j]]
            <= arr[lookup[R - (1 << j) + 1, j]])
            return arr[lookup[L, j]];
 
        else
            return arr[lookup[R - (1 << j) + 1, j]];
    }
 
    // Prints minimum of given m
    // query ranges in arr[0..n-1]
    static void RMQ(int[] arr,
                    int n, Query[] q, int m)
    {
        // Fills table lookup[n,Log n]
        preprocess(arr, n);
 
        // One by one compute sum of all queries
        for (int i = 0; i < m; i++)
        {
            // Left and right
            // boundaries of current range
            int L = q[i].L, R = q[i].R;
 
            // Print sum of current query range
            Console.WriteLine("Minimum of [" + L + ", " + R
                              + "] is " + query(arr, L, R));
        }
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        int[] a = { 7, 2, 3, 0, 5, 10, 3, 12, 18 };
        int n = a.Length;
        Query[] q = { new Query(0, 4), new Query(4, 7),
                      new Query(7, 8) };
        int m = q.Length;
        RMQ(a, n, q, m);
    }
}
 
// This code is contributed by Princi Singh


Javascript




<script>
// Javascript program to do range minimum query
// in O(1) time with O(n Log n) extra space
// and O(n Log n) preprocessing time
 
 
 
const MAX = 500;
 
// lookup[i][j] is going to store index
// of minimum value in arr[i..j].
// Ideally lookup table size should not be fixed
// and should be determined using n Log n.
// It is kept constant to keep code simple.
let lookup = new Array(MAX).fill(0).map(() => new Array(MAX))
 
// Structure to represent a query range
class Query {
    constructor(L, R) {
        this.L = L;
        this.R = R;
    }
};
 
// Fills lookup array lookup[][]
// in bottom up manner.
function preprocess(arr, n) {
    // Initialize M for the intervals
    // with length 1
    for (let i = 0; i < n; i++)
        lookup[i][0] = i;
 
    // Compute values from smaller
    // to bigger intervals
    for (let j = 1; (1 << j) <= n; j++) {
        // Compute minimum value for
        // all intervals with size 2^j
        for (let i = 0;
            (i + (1 << j) - 1) < n;
            i++) {
            // For arr[2][10], we compare
            // arr[lookup[0][3]]
            // and arr[lookup[3][3]]
            if (arr[lookup[i][j - 1]]
                < arr[lookup[i + (1 << (j - 1))]
                [j - 1]])
                lookup[i][j] = lookup[i][j - 1];
            else
                lookup[i][j]
                    = lookup[i + (1 << (j - 1))][j - 1];
        }
    }
}
 
// Returns minimum of arr[L..R]
function query(arr, L, R) {
    // For [2,10], j = 3
    let j = Math.floor(Math.log(R - L + 1));
 
    // For [2,10], we compare
    // arr[lookup[0][3]]
    // and arr[lookup[3][3]],
    if (arr[lookup[L][j]]
        <= arr[lookup[R - (1 << j) + 1][j]])
        return arr[lookup[L][j]];
 
    else
        return arr[lookup[R - (1 << j) + 1][j]];
}
 
// Prints minimum of given m
// query ranges in arr[0..n-1]
function RMQ(arr, n, q, m) {
    // Fills table lookup[n][Log n]
    preprocess(arr, n);
 
    // One by one compute sum of all queries
    for (let i = 0; i < m; i++) {
        // Left and right boundaries
        // of current range
        let L = q[i].L, R = q[i].R;
 
        // Print sum of current query range
        document.write("Minimum of ["
 
            + L + ", " + R
            + "] is "
            + query(arr, L, R) + "<br>");
    }
}
 
// Driver Code
 
let a = [7, 2, 3, 0, 5, 10, 3, 12, 18];
let n = a.length;
let q = [new Query(0, 4), new Query(4, 7),
new Query(7, 8)];
let m = q.length;
RMQ(a, n, q, m);
 
 
// This code is contributed by Saurabh jaiswal
</script>


Output

Minimum of [0, 4] is 0
Minimum of [4, 7] is 3
Minimum of [7, 8] is 12

So sparse table method supports query operation in O(1) time with O(n Log n) preprocessing time and O(n Log n) space.
 



Previous Article
Next Article

Similar Reads

MO's Algorithm (Query Square Root Decomposition) | Set 1 (Introduction)
Let us consider the following problem to understand MO's Algorithm.We are given an array and a set of query ranges, we are required to find the sum of every query range. Example: Input: arr[] = {1, 1, 2, 1, 3, 4, 5, 2, 8}; query[] = [0, 4], [1, 3] [2, 4] Output: Sum of arr[] elements in range [0, 4] is 8 Sum of arr[] elements in range [1, 3] is 4 S
15+ min read
Range sum query using Sparse Table
We have an array arr[]. We need to find the sum of all the elements in the range L and R where 0 &lt;= L &lt;= R &lt;= n-1. Consider a situation when there are many range queries. Examples: Input : 3 7 2 5 8 9 query(0, 5) query(3, 5) query(2, 4) Output : 34 22 15Note : array is 0 based indexed and queries too. Since there are no updates/modificatio
8 min read
Range maximum query using Sparse Table
Given an array arr[], the task is to answer queries to find the maximum of all the elements in the index range arr[L...R].Examples: Input: arr[] = {6, 7, 4, 5, 1, 3}, q[][] = {{0, 5}, {3, 5}, {2, 4}} Output: 7 5 5 Input: arr[] = {3, 34, 1}, q[][] = {{1, 2}} Output: 34 Approach: A similar problem to answer range minimum queries has been discussed he
9 min read
Generate matrix from given Sparse Matrix using Linked List and reconstruct the Sparse Matrix
Given a sparse matrix mat[][] of dimensions N*M, the task is to construct and represent the original matrix using a Linked List and reconstruct the givensparse matrix. Examples: Input: mat[][] = {{0, 1, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 2, 0, 0}, {0, 3, 0, 0, 4}, {0, 0, 5, 0, 0}}Output:Linked list representation: (4, 2, 5) ? (3, 4, 4) ? (3, 1, 3) ?
15+ min read
Square Root (Sqrt) Decomposition Algorithm
Square Root Decomposition Technique is one of the most common query optimization techniques used by competitive programmers. This technique helps us to reduce Time Complexity by a factor of sqrt(N) The key concept of this technique is to decompose a given array into small chunks specifically of size sqrt(N) Follow the below steps to solve the probl
15+ min read
Sqrt (or Square Root) Decomposition | Set 2 (LCA of Tree in O(sqrt(height)) time)
Prerequisite: Introduction and DFSThe task is to find LCA of two given nodes in a tree (not necessarily a Binary Tree). In previous posts, we have seen how to calculate LCA using the Sparse Matrix DP approach. In this post, we will see an optimization done on the Naive method by sqrt decomposition technique that works well over the Naive Approach.
15+ min read
Cholesky Decomposition : Matrix Decomposition
In linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions. One of them is Cholesky Decomposition. The Cholesky decomposition or Cholesky factorization is a decomposition of a Hermitian, positive-definite matrix into the product of a low
9 min read
Digital Root (repeated digital sum) of square of an integer using Digital root of the given integer
Given an integer N, the task is to find the digital root N2 using the digital root of N. Digital Root of a positive integer is calculated by adding the digits of the integer. If the resultant value is a single digit, then that digit is the digital root. If the resultant value contains two or more digits, those digits are summed and the process is r
6 min read
Segment Tree for Range Addition and Range Minimum Query
Given an array of size N initially filled with 0s. There are Q queries to be performed, and each query can be one of two types: Type 1 (1, L, R, X): Add X to all elements in the segment from L to R−1.Type 2 (2, L, R): Find the minimum value in the segment from L to R−1.Example: Input: n = 5, q = 6, queries = { {1, 0, 3, 3}, {2, 1, 2}, {1, 1, 4, 4},
15+ min read
Check if a number is perfect square without finding square root
Check whether a number is a perfect square or not without finding its square root. Examples: Input: n = 36 Output: Yes Input: n = 12 Output: No Recommended PracticeCheck perfect squareTry It! Method 1:The idea is to run a loop from i = 1 to floor(sqrt(n)) and then check if squaring it makes n. Below is the implementation: C/C++ Code // C++ program
9 min read