Open In App

Interpolation Search

Last Updated : 15 May, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

Given a sorted array of n uniformly distributed values arr[], write a function to search for a particular element x in the array. 
Linear Search finds the element in O(n) time, Jump Search takes O(? n) time and Binary Search takes O(log n) time. 
The Interpolation Search is an improvement over Binary Search for instances, where the values in a sorted array are uniformly distributed. Interpolation constructs new data points within the range of a discrete set of known data points. Binary Search always goes to the middle element to check. On the other hand, interpolation search may go to different locations according to the value of the key being searched. For example, if the value of the key is closer to the last element, interpolation search is likely to start search toward the end side.
To find the position to be searched, it uses the following formula. 

// The idea of formula is to return higher value of pos
// when element to be searched is closer to arr[hi]. And
// smaller value when closer to arr[lo]

arr[] ==> Array where elements need to be searched

x     ==> Element to be searched

lo    ==> Starting index in arr[]

hi    ==> Ending index in arr[]

pos = lo + [ \frac{(x-arr[lo])*(hi-lo) }{ (arr[hi]-arr[Lo]) }]

There are many different interpolation methods and one such is known as linear interpolation. Linear interpolation takes two data points which we assume as (x1,y1) and (x2,y2) and the formula is :  at point(x,y).

This algorithm works in a way we search for a word in a dictionary. The interpolation search algorithm improves the binary search algorithm.  The formula for finding a value is: K = data-low/high-low.

 

K is a constant which is used to narrow the search space. In the case of binary search, the value for this constant is: K=(low+high)/2.

  

The formula for pos can be derived as follows.

Let's assume that the elements of the array are linearly distributed. 

General equation of line : y = m*x + c.
y is the value in the array and x is its index.

Now putting value of lo,hi and x in the equation
arr[hi] = m*hi+c ----(1)
arr[lo] = m*lo+c ----(2)
x = m*pos + c     ----(3)

m = (arr[hi] - arr[lo] )/ (hi - lo)

subtracting eqxn (2) from (3)
x - arr[lo] = m * (pos - lo)
lo + (x - arr[lo])/m = pos
pos = lo + (x - arr[lo]) *(hi - lo)/(arr[hi] - arr[lo])

Algorithm 
The rest of the Interpolation algorithm is the same except for the above partition logic. 

  • Step1: In a loop, calculate the value of “pos” using the probe position formula. 
  • Step2: If it is a match, return the index of the item, and exit. 
  • Step3: If the item is less than arr[pos], calculate the probe position of the left sub-array. Otherwise, calculate the same in the right sub-array. 
  • Step4: Repeat until a match is found or the sub-array reduces to zero.


Below is the implementation of the algorithm. 

C

// C program to implement interpolation search
// with recursion
#include <stdio.h>
 
// If x is present in arr[0..n-1], then returns
// index of it, else returns -1.
int interpolationSearch(int arr[], int lo, int hi, int x)
{
    int pos;
    // Since array is sorted, an element present
    // in array must be in range defined by corner
    if (lo <= hi && x >= arr[lo] && x <= arr[hi]) {
        // Probing the position with keeping
        // uniform distribution in mind.
        pos = lo
              + (((double)(hi - lo) / (arr[hi] - arr[lo]))
                 * (x - arr[lo]));
 
        // Condition of target found
        if (arr[pos] == x)
            return pos;
 
        // If x is larger, x is in right sub array
        if (arr[pos] < x)
            return interpolationSearch(arr, pos + 1, hi, x);
 
        // If x is smaller, x is in left sub array
        if (arr[pos] > x)
            return interpolationSearch(arr, lo, pos - 1, x);
    }
    return -1;
}
 
// Driver Code
int main()
{
    // Array of items on which search will
    // be conducted.
    int arr[] = { 10, 12, 13, 16, 18, 19, 20, 21,
                  22, 23, 24, 33, 35, 42, 47 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    int x = 18; // Element to be searched
    int index = interpolationSearch(arr, 0, n - 1, x);
 
    // If element was found
    if (index != -1)
        printf("Element found at index %d", index);
    else
        printf("Element not found.");
    return 0;
}

                    

C++

// C++ program to implement interpolation
// search with recursion
#include <bits/stdc++.h>
using namespace std;
 
// If x is present in arr[0..n-1], then returns
// index of it, else returns -1.
int interpolationSearch(int arr[], int lo, int hi, int x)
{
    int pos;
 
    // Since array is sorted, an element present
    // in array must be in range defined by corner
    if (lo <= hi && x >= arr[lo] && x <= arr[hi]) {
 
        // Probing the position with keeping
        // uniform distribution in mind.
        pos = lo
              + (((double)(hi - lo) / (arr[hi] - arr[lo]))
                 * (x - arr[lo]));
 
        // Condition of target found
        if (arr[pos] == x)
            return pos;
 
        // If x is larger, x is in right sub array
        if (arr[pos] < x)
            return interpolationSearch(arr, pos + 1, hi, x);
 
        // If x is smaller, x is in left sub array
        if (arr[pos] > x)
            return interpolationSearch(arr, lo, pos - 1, x);
    }
    return -1;
}
 
// Driver Code
int main()
{
 
    // Array of items on which search will
    // be conducted.
    int arr[] = { 10, 12, 13, 16, 18, 19, 20, 21,
                  22, 23, 24, 33, 35, 42, 47 };
 
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Element to be searched
    int x = 18;
    int index = interpolationSearch(arr, 0, n - 1, x);
 
    // If element was found
    if (index != -1)
        cout << "Element found at index " << index;
    else
        cout << "Element not found.";
 
    return 0;
}
 
// This code is contributed by equbalzeeshan

                    

Java

// Java program to implement interpolation
// search with recursion
import java.util.*;
 
class GFG {
 
    // If x is present in arr[0..n-1], then returns
    // index of it, else returns -1.
    public static int interpolationSearch(int arr[], int lo,
                                          int hi, int x)
    {
        int pos;
 
        // Since array is sorted, an element
        // present in array must be in range
        // defined by corner
        if (lo <= hi && x >= arr[lo] && x <= arr[hi]) {
 
            // Probing the position with keeping
            // uniform distribution in mind.
            pos = lo
                  + (((hi - lo) / (arr[hi] - arr[lo]))
                     * (x - arr[lo]));
 
            // Condition of target found
            if (arr[pos] == x)
                return pos;
 
            // If x is larger, x is in right sub array
            if (arr[pos] < x)
                return interpolationSearch(arr, pos + 1, hi,
                                           x);
 
            // If x is smaller, x is in left sub array
            if (arr[pos] > x)
                return interpolationSearch(arr, lo, pos - 1,
                                           x);
        }
        return -1;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        // Array of items on which search will
        // be conducted.
        int arr[] = { 10, 12, 13, 16, 18, 19, 20, 21,
                      22, 23, 24, 33, 35, 42, 47 };
 
        int n = arr.length;
 
        // Element to be searched
        int x = 18;
        int index = interpolationSearch(arr, 0, n - 1, x);
 
        // If element was found
        if (index != -1)
            System.out.println("Element found at index "
                               + index);
        else
            System.out.println("Element not found.");
    }
}
 
// This code is contributed by equbalzeeshan

                    

Python3

# Python3 program to implement
# interpolation search
# with recursion
 
# If x is present in arr[0..n-1], then
# returns index of it, else returns -1.
 
 
def interpolationSearch(arr, lo, hi, x):
 
    # Since array is sorted, an element present
    # in array must be in range defined by corner
    if (lo <= hi and x >= arr[lo] and x <= arr[hi]):
 
        # Probing the position with keeping
        # uniform distribution in mind.
        pos = lo + ((hi - lo) // (arr[hi] - arr[lo]) *
                    (x - arr[lo]))
 
        # Condition of target found
        if arr[pos] == x:
            return pos
 
        # If x is larger, x is in right subarray
        if arr[pos] < x:
            return interpolationSearch(arr, pos + 1,
                                       hi, x)
 
        # If x is smaller, x is in left subarray
        if arr[pos] > x:
            return interpolationSearch(arr, lo,
                                       pos - 1, x)
    return -1
 
# Driver code
 
 
# Array of items in which
# search will be conducted
arr = [10, 12, 13, 16, 18, 19, 20,
       21, 22, 23, 24, 33, 35, 42, 47]
n = len(arr)
 
# Element to be searched
x = 18
index = interpolationSearch(arr, 0, n - 1, x)
 
if index != -1:
    print("Element found at index", index)
else:
    print("Element not found")
 
# This code is contributed by Hardik Jain

                    

C#

// C# program to implement
// interpolation search
using System;
 
class GFG{
 
// If x is present in
// arr[0..n-1], then
// returns index of it,
// else returns -1.
static int interpolationSearch(int []arr, int lo,
                               int hi, int x)
{
    int pos;
     
    // Since array is sorted, an element
    // present in array must be in range
    // defined by corner
    if (lo <= hi && x >= arr[lo] &&
                    x <= arr[hi])
    {
         
        // Probing the position
        // with keeping uniform
        // distribution in mind.
        pos = lo + (((hi - lo) /
                (arr[hi] - arr[lo])) *
                      (x - arr[lo]));
 
        // Condition of
        // target found
        if(arr[pos] == x)
        return pos;
         
        // If x is larger, x is in right sub array
        if(arr[pos] < x)
            return interpolationSearch(arr, pos + 1,
                                       hi, x);
         
        // If x is smaller, x is in left sub array
        if(arr[pos] > x)
            return interpolationSearch(arr, lo,
                                       pos - 1, x);
    }
    return -1;
}
 
// Driver Code
public static void Main()
{
     
    // Array of items on which search will
    // be conducted.
    int []arr = new int[]{ 10, 12, 13, 16, 18,
                           19, 20, 21, 22, 23,
                           24, 33, 35, 42, 47 };
                            
    // Element to be searched                      
    int x = 18;
    int n = arr.Length;
    int index = interpolationSearch(arr, 0, n - 1, x);
     
    // If element was found
    if (index != -1)
        Console.WriteLine("Element found at index " +
                           index);
    else
        Console.WriteLine("Element not found.");
}
}
 
// This code is contributed by equbalzeeshan

                    

Javascript

<script>
// Javascript program to implement Interpolation Search
 
// If x is present in arr[0..n-1], then returns
// index of it, else returns -1.
 
function interpolationSearch(arr, lo, hi, x){
  let pos;
   
  // Since array is sorted, an element present
  // in array must be in range defined by corner
   
  if (lo <= hi && x >= arr[lo] && x <= arr[hi]) {
     
    // Probing the position with keeping
    // uniform distribution in mind.
    pos = lo + Math.floor(((hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo]));;
     
    // Condition of target found
        if (arr[pos] == x){
          return pos;
        }
  
        // If x is larger, x is in right sub array
        if (arr[pos] < x){
          return interpolationSearch(arr, pos + 1, hi, x);
        }
  
        // If x is smaller, x is in left sub array
        if (arr[pos] > x){
          return interpolationSearch(arr, lo, pos - 1, x);
        }
    }
    return -1;
}
 
// Driver Code
let arr = [10, 12, 13, 16, 18, 19, 20, 21,
           22, 23, 24, 33, 35, 42, 47];
 
let n = arr.length;
 
// Element to be searched
let x = 18
let index = interpolationSearch(arr, 0, n - 1, x);
 
// If element was found
if (index != -1){
   document.write(`Element found at index ${index}`)
}else{
   document.write("Element not found");
}
 
// This code is contributed by _saurabh_jaiswal
</script>

                    

PHP

<?php
// PHP program to implement $erpolation search
// with recursion
 
// If x is present in arr[0..n-1], then returns
// index of it, else returns -1.
function interpolationSearch($arr, $lo, $hi, $x)
{
    // Since array is sorted, an element present
    // in array must be in range defined by corner
    if ($lo <= $hi && $x >= $arr[$lo] && $x <= $arr[$hi]) {
        // Probing the position with keeping
        // uniform distribution in mind.
        $pos = (int)($lo
                     + (((double)($hi - $lo)
                         / ($arr[$hi] - $arr[$lo]))
                        * ($x - $arr[$lo])));
 
        // Condition of target found
        if ($arr[$pos] == $x)
            return $pos;
 
        // If x is larger, x is in right sub array
        if ($arr[$pos] < $x)
            return interpolationSearch($arr, $pos + 1, $hi,
                                       $x);
 
        // If x is smaller, x is in left sub array
        if ($arr[$pos] > $x)
            return interpolationSearch($arr, $lo, $pos - 1,
                                       $x);
    }
    return -1;
}
 
// Driver Code
// Array of items on which search will
// be conducted.
$arr = array(10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 33,
             35, 42, 47);
$n = sizeof($arr);
 
$x = 47; // Element to be searched
$index = interpolationSearch($arr, 0, $n - 1, $x);
 
// If element was found
if ($index != -1)
    echo "Element found at index ".$index;
else
    echo "Element not found.";
return 0;
#This code is contributed by Susobhan Akhuli
?>

                    

Output
Element found at index 4

Time Complexity: O(log2(log2 n)) for the average case, and O(n) for the worst case 
Auxiliary Space Complexity: O(1)

Another approach:-

This is the iteration approach for the interpolation search.

  • Step1: In a loop, calculate the value of “pos” using the probe position formula. 
  • Step2: If it is a match, return the index of the item, and exit. 
  • Step3: If the item is less than arr[pos], calculate the probe position of the left sub-array. Otherwise, calculate the same in the right sub-array. 
  • Step4: Repeat until a match is found or the sub-array reduces to zero.

Below is the implementation of the algorithm. 

C++

// C++ program to implement interpolation search by using iteration approach
#include<bits/stdc++.h>
using namespace std;
   
int interpolationSearch(int arr[], int n, int x)
{
    // Find indexes of two corners
    int low = 0, high = (n - 1);
    // Since array is sorted, an element present
    // in array must be in range defined by corner
    while (low <= high && x >= arr[low] && x <= arr[high])
    {
        if (low == high)
        {if (arr[low] == x) return low;
        return -1;
        }
        // Probing the position with keeping
        // uniform distribution in mind.
        int pos = low + (((double)(high - low) /
            (arr[high] - arr[low])) * (x - arr[low]));
   
        // Condition of target found
        if (arr[pos] == x)
            return pos;
        // If x is larger, x is in upper part
        if (arr[pos] < x)
            low = pos + 1;
        // If x is smaller, x is in the lower part
        else
            high = pos - 1;
    }
    return -1;
}
   
// Main function
int main()
{
    // Array of items on whighch search will
    // be conducted.
    int arr[] = {10, 12, 13, 16, 18, 19, 20, 21,
                 22, 23, 24, 33, 35, 42, 47};
    int n = sizeof(arr)/sizeof(arr[0]);
   
    int x = 18; // Element to be searched
    int index = interpolationSearch(arr, n, x);
   
    // If element was found
    if (index != -1)
        cout << "Element found at index " << index;
    else
        cout << "Element not found.";
    return 0;
}
 //this code contributed by  Ajay Singh

                    

Python3

# Python equivalent of above C++ code
# Python program to implement interpolation search by using iteration approach
def interpolationSearch(arr, n, x):
   
    # Find indexes of two corners
    low = 0
    high = (n - 1)
   
    # Since array is sorted, an element present
    # in array must be in range defined by corner
    while low <= high and x >= arr[low] and x <= arr[high]:
        if low == high:
            if arr[low] == x:
                return low;
            return -1;
   
        # Probing the position with keeping
        # uniform distribution in mind.
        pos = int(low + (((float(high - low)/( arr[high] - arr[low])) * (x - arr[low]))))
   
        # Condition of target found
        if arr[pos] == x:
            return pos
   
        # If x is larger, x is in upper part
        if arr[pos] < x:
            low = pos + 1;
   
        # If x is smaller, x is in lower part
        else:
            high = pos - 1;
       
    return -1
   
# Main function
if __name__ == "__main__":
    # Array of items on whighch search will
    # be conducted.
    arr = [10, 12, 13, 16, 18, 19, 20, 21,
           22, 23, 24, 33, 35, 42, 47]
    n = len(arr)
   
    x = 18 # Element to be searched
    index = interpolationSearch(arr, n, x)
   
    # If element was found
    if index != -1:
        print ("Element found at index",index)
    else:
        print ("Element not found")

                    

Javascript

// JavaScript program to implement interpolation search by using iteration approach
 
function interpolationSearch(arr, n, x) {
// Find indexes of two corners
let low = 0;
let high = n - 1;
 
// Since array is sorted, an element present
// in array must be in range defined by corner
while (low <= high && x >= arr[low] && x <= arr[high]) {
    if (low == high) {
        if (arr[low] == x) {
            return low;
        }
        return -1;
    }
 
    // Probing the position with keeping
    // uniform distribution in mind.
    let pos = Math.floor(low + (((high - low) / (arr[high] - arr[low])) * (x - arr[low])));
 
    // Condition of target found
    if (arr[pos] == x) {
        return pos;
    }
 
    // If x is larger, x is in upper part
    if (arr[pos] < x) {
        low = pos + 1;
    }
 
    // If x is smaller, x is in lower part
    else {
        high = pos - 1;
    }
}
 
return -1;
}
// Main function
let arr = [10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 33, 35, 42, 47];
let n = arr.length;
 
let x = 18; // Element to be searched
let index = interpolationSearch(arr, n, x);
 
// If element was found
if (index != -1) {
console.log("Element found at index", index);
} else {
console.log("Element not found");
}

                    

C#

// C# program to implement interpolation search by using
// iteration approach
using System;
 
class Program
{
    // Interpolation Search function
    static int InterpolationSearch(int[] arr, int n, int x)
    {
        int low = 0;
        int high = n - 1;
   
        while (low <= high && x >= arr[low] && x <= arr[high])
        {
            if (low == high)
            {
                if (arr[low] == x)
                    return low;
                return -1;
            }
   
            int pos = low + (int)(((float)(high - low) / (arr[high] - arr[low])) * (x - arr[low]));
   
            if (arr[pos] == x)
                return pos;
   
            if (arr[pos] < x)
                low = pos + 1;
   
            else
                high = pos - 1;
        }
   
        return -1;
    }
   
    // Main function
    static void Main(string[] args)
    {
        int[] arr = {10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 33, 35, 42, 47};
        int n = arr.Length;
   
        int x = 18;
        int index = InterpolationSearch(arr, n, x);
   
        if (index != -1)
            Console.WriteLine("Element found at index " + index);
        else
            Console.WriteLine("Element not found");
    }
}
 
// This code is contributed by Susobhan Akhuli

                    

Java

// Java program to implement interpolation
// search with recursion
import java.util.*;
 
class GFG {
 
    // If x is present in arr[0..n-1], then returns
    // index of it, else returns -1.
    public static int interpolationSearch(int arr[], int lo,
                                        int hi, int x)
    {
        int pos;
 
        if (lo <= hi && x >= arr[lo] && x <= arr[hi]) {
 
            // Probing the position with keeping
            // uniform distribution in mind.
            pos = lo
                + (((hi - lo) / (arr[hi] - arr[lo]))
                    * (x - arr[lo]));
 
            // Condition of target found
            if (arr[pos] == x)
                return pos;
 
            // If x is larger, x is in right sub array
            if (arr[pos] < x)
                return interpolationSearch(arr, pos + 1, hi,
                                        x);
 
            // If x is smaller, x is in left sub array
            if (arr[pos] > x)
                return interpolationSearch(arr, lo, pos - 1,
                                        x);
        }
        return -1;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        // Array of items on which search will
        // be conducted.
        int arr[] = { 10, 12, 13, 16, 18, 19, 20, 21,
                    22, 23, 24, 33, 35, 42, 47 };
 
        int n = arr.length;
 
        // Element to be searched
        int x = 18;
        int index = interpolationSearch(arr, 0, n - 1, x);
 
        // If element was found
        if (index != -1)
            System.out.println("Element found at index "
                            + index);
        else
            System.out.println("Element not found.");
    }
}

                    

Output
Element found at index 4

Time Complexity: O(log2(log2 n)) for the average case, and O(n) for the worst case 
Auxiliary Space Complexity: O(1)



 



Previous Article
Next Article

Similar Reads

Interpolation search vs Binary search
Interpolation search works better than Binary Search for a Sorted and Uniformly Distributed array. Binary Search goes to the middle element to check irrespective of search-key. On the other hand, Interpolation Search may go to different locations according to search-key. If the value of the search-key is close to the last element, Interpolation Sea
7 min read
Interpolation Search in Python
Interpolation Search is an efficient searching algorithm particularly when dealing with the uniformly distributed sorted arrays. It improves upon binary search by the estimating the location of the target element based on its value and the range of the elements in the array. For example, if the target value is closer to the first element, interpola
4 min read
Newton's Divided Difference Interpolation Formula
Interpolation is an estimation of a value within two known values in a sequence of values. Newton's divided difference interpolation formula is an interpolation technique used when the interval difference is not same for all sequence of values. Suppose f(x0), f(x1), f(x2).........f(xn) be the (n+1) values of the function y=f(x) corresponding to the
11 min read
Program to implement Inverse Interpolation using Lagrange Formula
Given task is to find the value of x for a given y of an unknown function y = f(x) where values of some points (x, y) pairs are given.Let, y = f(x) be an unknown function where x in an independent variable. For different values of x, say [Tex]x_0, x_1, x_2, ..., x_m ( i.e [/Tex][Tex]x_k, k=0, 1, 2, 3...m) [/Tex]values of respective [Tex]y_0, y_1, y
8 min read
Program for Stirling Interpolation Formula
Given n number of floating values x, and their corresponding functional values f(x), estimate the value of the mathematical function for any intermediate value of the independent variable x, i.e., at x = a. Examples: Input : n = 5 x[Tex]_1[/Tex] = 0, x[Tex]_2[/Tex] = 0.5, x[Tex]_3[/Tex] = 1.0, x[Tex]_4[/Tex] = 1.5, x[Tex]_5[/Tex] = 2.0 f(x[Tex]_1[/
13 min read
Newton Forward And Backward Interpolation
Interpolation is the technique of estimating the value of a function for any intermediate value of the independent variable, while the process of computing the value of the function outside the given range is called extrapolation. Forward Differences: The differences y1 – y0, y2 – y1, y3 – y2, ......, yn – yn–1 when denoted by dy0, dy1, dy2, ......
15+ min read
Bessel's Interpolation
Interpolation is the technique of estimating the value of a function for any intermediate value of the independent variable, while the process of computing the value of the function outside the given range is called extrapolation. Central differences : The central difference operator d is defined by the relations : Similarly, high order central dif
12 min read
Lagrange's Interpolation
What is Interpolation? Interpolation is a method of finding new data points within the range of a discrete set of known data points (Source Wiki). In other words interpolation is the technique to estimate the value of a mathematical function, for any intermediate value of the independent variable. For example, in the given table we're given 4 set o
7 min read
Iterative Deepening Search(IDS) or Iterative Deepening Depth First Search(IDDFS)
There are two common ways to traverse a graph, BFS and DFS. Considering a Tree (or Graph) of huge height and width, both BFS and DFS are not very efficient due to following reasons. DFS first traverses nodes going through one adjacent of root, then next adjacent. The problem with this approach is, if there is a node close to root, but not in first
10 min read
Meta Binary Search | One-Sided Binary Search
Meta binary search (also called one-sided binary search by Steven Skiena in The Algorithm Design Manual on page 134) is a modified form of binary search that incrementally constructs the index of the target value in the array. Like normal binary search, meta binary search takes O(log n) time. Meta Binary Search, also known as One-Sided Binary Searc
9 min read