Interpolation Search
Last Updated :
15 May, 2023
Given a sorted array of n uniformly distributed values arr[], write a function to search for a particular element x in the array.
Linear Search finds the element in O(n) time, Jump Search takes O(? n) time and Binary Search takes O(log n) time.
The Interpolation Search is an improvement over Binary Search for instances, where the values in a sorted array are uniformly distributed. Interpolation constructs new data points within the range of a discrete set of known data points. Binary Search always goes to the middle element to check. On the other hand, interpolation search may go to different locations according to the value of the key being searched. For example, if the value of the key is closer to the last element, interpolation search is likely to start search toward the end side.
To find the position to be searched, it uses the following formula.
// The idea of formula is to return higher value of pos
// when element to be searched is closer to arr[hi]. And
// smaller value when closer to arr[lo]
arr[] ==> Array where elements need to be searched
x ==> Element to be searched
lo ==> Starting index in arr[]
hi ==> Ending index in arr[]
There are many different interpolation methods and one such is known as linear interpolation. Linear interpolation takes two data points which we assume as (x1,y1) and (x2,y2) and the formula is : at point(x,y).
This algorithm works in a way we search for a word in a dictionary. The interpolation search algorithm improves the binary search algorithm. The formula for finding a value is: K = data-low/high-low.
K is a constant which is used to narrow the search space. In the case of binary search, the value for this constant is: K=(low+high)/2.
The formula for pos can be derived as follows.
Let's assume that the elements of the array are linearly distributed.
General equation of line : y = m*x + c.
y is the value in the array and x is its index.
Now putting value of lo,hi and x in the equation
arr[hi] = m*hi+c ----(1)
arr[lo] = m*lo+c ----(2)
x = m*pos + c ----(3)
m = (arr[hi] - arr[lo] )/ (hi - lo)
subtracting eqxn (2) from (3)
x - arr[lo] = m * (pos - lo)
lo + (x - arr[lo])/m = pos
pos = lo + (x - arr[lo]) *(hi - lo)/(arr[hi] - arr[lo])
Algorithm
The rest of the Interpolation algorithm is the same except for the above partition logic.
- Step1: In a loop, calculate the value of “pos” using the probe position formula.
- Step2: If it is a match, return the index of the item, and exit.
- Step3: If the item is less than arr[pos], calculate the probe position of the left sub-array. Otherwise, calculate the same in the right sub-array.
- Step4: Repeat until a match is found or the sub-array reduces to zero.
Below is the implementation of the algorithm.
C
#include <stdio.h>
int interpolationSearch( int arr[], int lo, int hi, int x)
{
int pos;
if (lo <= hi && x >= arr[lo] && x <= arr[hi]) {
pos = lo
+ ((( double )(hi - lo) / (arr[hi] - arr[lo]))
* (x - arr[lo]));
if (arr[pos] == x)
return pos;
if (arr[pos] < x)
return interpolationSearch(arr, pos + 1, hi, x);
if (arr[pos] > x)
return interpolationSearch(arr, lo, pos - 1, x);
}
return -1;
}
int main()
{
int arr[] = { 10, 12, 13, 16, 18, 19, 20, 21,
22, 23, 24, 33, 35, 42, 47 };
int n = sizeof (arr) / sizeof (arr[0]);
int x = 18;
int index = interpolationSearch(arr, 0, n - 1, x);
if (index != -1)
printf ( "Element found at index %d" , index);
else
printf ( "Element not found." );
return 0;
}
|
C++
#include <bits/stdc++.h>
using namespace std;
int interpolationSearch( int arr[], int lo, int hi, int x)
{
int pos;
if (lo <= hi && x >= arr[lo] && x <= arr[hi]) {
pos = lo
+ ((( double )(hi - lo) / (arr[hi] - arr[lo]))
* (x - arr[lo]));
if (arr[pos] == x)
return pos;
if (arr[pos] < x)
return interpolationSearch(arr, pos + 1, hi, x);
if (arr[pos] > x)
return interpolationSearch(arr, lo, pos - 1, x);
}
return -1;
}
int main()
{
int arr[] = { 10, 12, 13, 16, 18, 19, 20, 21,
22, 23, 24, 33, 35, 42, 47 };
int n = sizeof (arr) / sizeof (arr[0]);
int x = 18;
int index = interpolationSearch(arr, 0, n - 1, x);
if (index != -1)
cout << "Element found at index " << index;
else
cout << "Element not found." ;
return 0;
}
|
Java
import java.util.*;
class GFG {
public static int interpolationSearch( int arr[], int lo,
int hi, int x)
{
int pos;
if (lo <= hi && x >= arr[lo] && x <= arr[hi]) {
pos = lo
+ (((hi - lo) / (arr[hi] - arr[lo]))
* (x - arr[lo]));
if (arr[pos] == x)
return pos;
if (arr[pos] < x)
return interpolationSearch(arr, pos + 1 , hi,
x);
if (arr[pos] > x)
return interpolationSearch(arr, lo, pos - 1 ,
x);
}
return - 1 ;
}
public static void main(String[] args)
{
int arr[] = { 10 , 12 , 13 , 16 , 18 , 19 , 20 , 21 ,
22 , 23 , 24 , 33 , 35 , 42 , 47 };
int n = arr.length;
int x = 18 ;
int index = interpolationSearch(arr, 0 , n - 1 , x);
if (index != - 1 )
System.out.println( "Element found at index "
+ index);
else
System.out.println( "Element not found." );
}
}
|
Python3
def interpolationSearch(arr, lo, hi, x):
if (lo < = hi and x > = arr[lo] and x < = arr[hi]):
pos = lo + ((hi - lo) / / (arr[hi] - arr[lo]) *
(x - arr[lo]))
if arr[pos] = = x:
return pos
if arr[pos] < x:
return interpolationSearch(arr, pos + 1 ,
hi, x)
if arr[pos] > x:
return interpolationSearch(arr, lo,
pos - 1 , x)
return - 1
arr = [ 10 , 12 , 13 , 16 , 18 , 19 , 20 ,
21 , 22 , 23 , 24 , 33 , 35 , 42 , 47 ]
n = len (arr)
x = 18
index = interpolationSearch(arr, 0 , n - 1 , x)
if index ! = - 1 :
print ( "Element found at index" , index)
else :
print ( "Element not found" )
|
C#
using System;
class GFG{
static int interpolationSearch( int []arr, int lo,
int hi, int x)
{
int pos;
if (lo <= hi && x >= arr[lo] &&
x <= arr[hi])
{
pos = lo + (((hi - lo) /
(arr[hi] - arr[lo])) *
(x - arr[lo]));
if (arr[pos] == x)
return pos;
if (arr[pos] < x)
return interpolationSearch(arr, pos + 1,
hi, x);
if (arr[pos] > x)
return interpolationSearch(arr, lo,
pos - 1, x);
}
return -1;
}
public static void Main()
{
int []arr = new int []{ 10, 12, 13, 16, 18,
19, 20, 21, 22, 23,
24, 33, 35, 42, 47 };
int x = 18;
int n = arr.Length;
int index = interpolationSearch(arr, 0, n - 1, x);
if (index != -1)
Console.WriteLine( "Element found at index " +
index);
else
Console.WriteLine( "Element not found." );
}
}
|
Javascript
<script>
function interpolationSearch(arr, lo, hi, x){
let pos;
if (lo <= hi && x >= arr[lo] && x <= arr[hi]) {
pos = lo + Math.floor(((hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo]));;
if (arr[pos] == x){
return pos;
}
if (arr[pos] < x){
return interpolationSearch(arr, pos + 1, hi, x);
}
if (arr[pos] > x){
return interpolationSearch(arr, lo, pos - 1, x);
}
}
return -1;
}
let arr = [10, 12, 13, 16, 18, 19, 20, 21,
22, 23, 24, 33, 35, 42, 47];
let n = arr.length;
let x = 18
let index = interpolationSearch(arr, 0, n - 1, x);
if (index != -1){
document.write(`Element found at index ${index}`)
} else {
document.write( "Element not found" );
}
</script>
|
PHP
<?php
function interpolationSearch( $arr , $lo , $hi , $x )
{
if ( $lo <= $hi && $x >= $arr [ $lo ] && $x <= $arr [ $hi ]) {
$pos = (int)( $lo
+ (((double)( $hi - $lo )
/ ( $arr [ $hi ] - $arr [ $lo ]))
* ( $x - $arr [ $lo ])));
if ( $arr [ $pos ] == $x )
return $pos ;
if ( $arr [ $pos ] < $x )
return interpolationSearch( $arr , $pos + 1, $hi ,
$x );
if ( $arr [ $pos ] > $x )
return interpolationSearch( $arr , $lo , $pos - 1,
$x );
}
return -1;
}
$arr = array (10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 33,
35, 42, 47);
$n = sizeof( $arr );
$x = 47;
$index = interpolationSearch( $arr , 0, $n - 1, $x );
if ( $index != -1)
echo "Element found at index " . $index ;
else
echo "Element not found." ;
return 0;
#This code is contributed by Susobhan Akhuli
?>
|
OutputElement found at index 4
Time Complexity: O(log2(log2 n)) for the average case, and O(n) for the worst case
Auxiliary Space Complexity: O(1)
Another approach:-
This is the iteration approach for the interpolation search.
- Step1: In a loop, calculate the value of “pos” using the probe position formula.
- Step2: If it is a match, return the index of the item, and exit.
- Step3: If the item is less than arr[pos], calculate the probe position of the left sub-array. Otherwise, calculate the same in the right sub-array.
- Step4: Repeat until a match is found or the sub-array reduces to zero.
Below is the implementation of the algorithm.
C++
#include<bits/stdc++.h>
using namespace std;
int interpolationSearch( int arr[], int n, int x)
{
int low = 0, high = (n - 1);
while (low <= high && x >= arr[low] && x <= arr[high])
{
if (low == high)
{ if (arr[low] == x) return low;
return -1;
}
int pos = low + ((( double )(high - low) /
(arr[high] - arr[low])) * (x - arr[low]));
if (arr[pos] == x)
return pos;
if (arr[pos] < x)
low = pos + 1;
else
high = pos - 1;
}
return -1;
}
int main()
{
int arr[] = {10, 12, 13, 16, 18, 19, 20, 21,
22, 23, 24, 33, 35, 42, 47};
int n = sizeof (arr)/ sizeof (arr[0]);
int x = 18;
int index = interpolationSearch(arr, n, x);
if (index != -1)
cout << "Element found at index " << index;
else
cout << "Element not found." ;
return 0;
}
|
Python3
def interpolationSearch(arr, n, x):
low = 0
high = (n - 1 )
while low < = high and x > = arr[low] and x < = arr[high]:
if low = = high:
if arr[low] = = x:
return low;
return - 1 ;
pos = int (low + ((( float (high - low) / ( arr[high] - arr[low])) * (x - arr[low]))))
if arr[pos] = = x:
return pos
if arr[pos] < x:
low = pos + 1 ;
else :
high = pos - 1 ;
return - 1
if __name__ = = "__main__" :
arr = [ 10 , 12 , 13 , 16 , 18 , 19 , 20 , 21 ,
22 , 23 , 24 , 33 , 35 , 42 , 47 ]
n = len (arr)
x = 18
index = interpolationSearch(arr, n, x)
if index ! = - 1 :
print ( "Element found at index" ,index)
else :
print ( "Element not found" )
|
Javascript
function interpolationSearch(arr, n, x) {
let low = 0;
let high = n - 1;
while (low <= high && x >= arr[low] && x <= arr[high]) {
if (low == high) {
if (arr[low] == x) {
return low;
}
return -1;
}
let pos = Math.floor(low + (((high - low) / (arr[high] - arr[low])) * (x - arr[low])));
if (arr[pos] == x) {
return pos;
}
if (arr[pos] < x) {
low = pos + 1;
}
else {
high = pos - 1;
}
}
return -1;
}
let arr = [10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 33, 35, 42, 47];
let n = arr.length;
let x = 18;
let index = interpolationSearch(arr, n, x);
if (index != -1) {
console.log( "Element found at index" , index);
} else {
console.log( "Element not found" );
}
|
C#
using System;
class Program
{
static int InterpolationSearch( int [] arr, int n, int x)
{
int low = 0;
int high = n - 1;
while (low <= high && x >= arr[low] && x <= arr[high])
{
if (low == high)
{
if (arr[low] == x)
return low;
return -1;
}
int pos = low + ( int )((( float )(high - low) / (arr[high] - arr[low])) * (x - arr[low]));
if (arr[pos] == x)
return pos;
if (arr[pos] < x)
low = pos + 1;
else
high = pos - 1;
}
return -1;
}
static void Main( string [] args)
{
int [] arr = {10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 33, 35, 42, 47};
int n = arr.Length;
int x = 18;
int index = InterpolationSearch(arr, n, x);
if (index != -1)
Console.WriteLine( "Element found at index " + index);
else
Console.WriteLine( "Element not found" );
}
}
|
Java
import java.util.*;
class GFG {
public static int interpolationSearch( int arr[], int lo,
int hi, int x)
{
int pos;
if (lo <= hi && x >= arr[lo] && x <= arr[hi]) {
pos = lo
+ (((hi - lo) / (arr[hi] - arr[lo]))
* (x - arr[lo]));
if (arr[pos] == x)
return pos;
if (arr[pos] < x)
return interpolationSearch(arr, pos + 1 , hi,
x);
if (arr[pos] > x)
return interpolationSearch(arr, lo, pos - 1 ,
x);
}
return - 1 ;
}
public static void main(String[] args)
{
int arr[] = { 10 , 12 , 13 , 16 , 18 , 19 , 20 , 21 ,
22 , 23 , 24 , 33 , 35 , 42 , 47 };
int n = arr.length;
int x = 18 ;
int index = interpolationSearch(arr, 0 , n - 1 , x);
if (index != - 1 )
System.out.println( "Element found at index "
+ index);
else
System.out.println( "Element not found." );
}
}
|
OutputElement found at index 4
Time Complexity: O(log2(log2 n)) for the average case, and O(n) for the worst case
Auxiliary Space Complexity: O(1)
Please Login to comment...