Open In App

Prefix to Postfix Conversion

Last Updated : 23 Jan, 2024
Improve
Improve
Like Article
Like
Save
Share
Report

Given a Prefix expression, convert it into a Postfix expression. 
Conversion of Prefix expression directly to Postfix without going through the process of converting them first to Infix and then to Postfix is much better in terms of computation and better understanding the expression (Computers evaluate using Postfix expression). 

let’s discuss about Prefix and Postfix notation:

Prefix: An expression is called the prefix expression if the operator appears in the expression before the operands. Simply of the form (operator operand1 operand2). 
Example : *+AB-CD (Infix : (A+B) * (C-D) )

Postfix: An expression is called the postfix expression if the operator appears in the expression after the operands. Simply of the form (operand1 operand2 operator). 
Example : AB+CD-* (Infix : (A+B * (C-D) )

Note : Follow the link for prefix to postfix online convertor.

Examples: 

Input :  Prefix :  *+AB-CD
Output : Postfix : AB+CD-*
Explanation : Prefix to Infix :  (A+B) * (C-D)
                         Infix to Postfix :  AB+CD-*

Input :  Prefix :  *-A/BC-/AKL
Output : Postfix : ABC/-AK/L-*
Explanation : Prefix to Infix :  (A-(B/C))*((A/K)-L)
                         Infix to Postfix : ABC/-AK/L-* 

Algorithm for Prefix to Postfix

  • Read the Prefix expression in reverse order (from right to left)
  • If the symbol is an operand, then push it onto the Stack
  • If the symbol is an operator, then pop two operands from the Stack 
    Create a string by concatenating the two operands and the operator after them. 
    string = operand1 + operand2 + operator 
    And push the resultant string back to Stack
  • Repeat the above steps until end of Prefix expression.

Code for Prefix to postfix conversion:

C++




// CPP Program to convert prefix to postfix
#include <iostream>
#include <stack>
using namespace std;
 
// function to check if character is operator or not
bool isOperator(char x)
{
    switch (x) {
    case '+':
    case '-':
    case '/':
    case '*':
        return true;
    }
    return false;
}
 
// Convert prefix to Postfix expression
string preToPost(string pre_exp)
{
 
    stack<string> s;
    // length of expression
    int length = pre_exp.size();
 
    // reading from right to left
    for (int i = length - 1; i >= 0; i--)
    {
        // check if symbol is operator
        if (isOperator(pre_exp[i]))
        {
            // pop two operands from stack
            string op1 = s.top();
            s.pop();
            string op2 = s.top();
            s.pop();
 
            // concat the operands and operator
            string temp = op1 + op2 + pre_exp[i];
 
            // Push string temp back to stack
            s.push(temp);
        }
 
        // if symbol is an operand
        else {
 
            // push the operand to the stack
            s.push(string(1, pre_exp[i]));
        }
    }
 
    // stack contains only the Postfix expression
    return s.top();
}
 
// Driver Code
int main()
{
    string pre_exp = "*-A/BC-/AKL";
    cout << "Postfix : " << preToPost(pre_exp);
    return 0;
}


Java




// JavaProgram to convert prefix to postfix
import java.util.*;
 
class GFG {
 
    // function to check if character
    // is operator or not
    static boolean isOperator(char x)
    {
        switch (x) {
        case '+':
        case '-':
        case '/':
        case '*':
            return true;
        }
        return false;
    }
 
    // Convert prefix to Postfix expression
    static String preToPost(String pre_exp)
    {
 
        Stack<String> s = new Stack<String>();
 
        // length of expression
        int length = pre_exp.length();
 
        // reading from right to left
        for (int i = length - 1; i >= 0; i--)
        {
            // check if symbol is operator
            if (isOperator(pre_exp.charAt(i)))
            {
                // pop two operands from stack
                String op1 = s.peek();
                s.pop();
                String op2 = s.peek();
                s.pop();
 
                // concat the operands and operator
                String temp = op1 + op2 + pre_exp.charAt(i);
 
                // Push String temp back to stack
                s.push(temp);
            }
 
            // if symbol is an operand
            else {
                // push the operand to the stack
                s.push(pre_exp.charAt(i) + "");
            }
        }
 
        // stack contains only the Postfix expression
        return s.peek();
    }
 
    // Driver Code
    public static void main(String args[])
    {
        String pre_exp = "*-A/BC-/AKL";
        System.out.println("Postfix : "
                           + preToPost(pre_exp));
    }
}
 
// This code is contributed by Arnab Kundu


Python 3




# Write Python3 code here
# -*- coding: utf-8 -*-
 
# Example Input
s = "*-A/BC-/AKL"
 
# Stack for storing operands
stack = []
 
operators = set(['+', '-', '*', '/', '^'])
 
# Reversing the order
s = s[::-1]
 
# iterating through individual tokens
for i in s:
 
    # if token is operator
    if i in operators:
 
        # pop 2 elements from stack
        a = stack.pop()
        b = stack.pop()
 
        # concatenate them as operand1 +
        # operand2 + operator
        temp = a+b+i
        stack.append(temp)
 
    # else if operand
    else:
        stack.append(i)
 
# printing final output
print(*stack)


C#




// C# Program to convert prefix to postfix
using System;
using System.Collections.Generic;
 
class GFG {
 
    // function to check if character
    // is operator or not
    static bool isOperator(char x)
    {
        switch (x) {
        case '+':
        case '-':
        case '/':
        case '*':
            return true;
        }
        return false;
    }
 
    // Convert prefix to Postfix expression
    static String preToPost(String pre_exp)
    {
 
        Stack<String> s = new Stack<String>();
 
        // length of expression
        int length = pre_exp.Length;
 
        // reading from right to left
        for (int i = length - 1; i >= 0; i--)
        {
 
            // check if symbol is operator
            if (isOperator(pre_exp[i]))
            {
                // pop two operands from stack
                String op1 = s.Peek();
                s.Pop();
                String op2 = s.Peek();
                s.Pop();
 
                // concat the operands and operator
                String temp = op1 + op2 + pre_exp[i];
 
                // Push String temp back to stack
                s.Push(temp);
            }
 
            // if symbol is an operand
            else {
                // push the operand to the stack
                s.Push(pre_exp[i] + "");
            }
        }
 
        // stack contains only the Postfix expression
        return s.Peek();
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        String pre_exp = "*-A/BC-/AKL";
        Console.WriteLine("Postfix : "
                          + preToPost(pre_exp));
    }
}
 
/* This code contributed by PrinciRaj1992 */


Javascript




<script>
    // Javascript Program to convert prefix to postfix
     
    // function to check if character
    // is operator or not
    function isOperator(x)
    {
        switch (x) {
        case '+':
        case '-':
        case '/':
        case '*':
            return true;
        }
        return false;
    }
     
    // Convert prefix to Postfix expression
    function preToPost(pre_exp)
    {
  
        let s = [];
  
        // length of expression
        let length = pre_exp.length;
  
        // reading from right to left
        for (let i = length - 1; i >= 0; i--)
        {
  
            // check if symbol is operator
            if (isOperator(pre_exp[i]))
            {
                // pop two operands from stack
                let op1 = s[s.length - 1];
                s.pop();
                let op2 = s[s.length - 1];
                s.pop();
  
                // concat the operands and operator
                let temp = op1 + op2 + pre_exp[i];
  
                // Push String temp back to stack
                s.push(temp);
            }
  
            // if symbol is an operand
            else {
                // push the operand to the stack
                s.push(pre_exp[i] + "");
            }
        }
  
        // stack contains only the Postfix expression
        return s[s.length - 1];
    }
     
    let pre_exp = "*-A/BC-/AKL";
    document.write("Postfix : " + preToPost(pre_exp));
     
    // This code is contributed by suresh07.
</script>


Output

Postfix : ABC/-AK/L-*

Time Complexity: O(N), as we are using a loop for traversing the expression.
Auxiliary Space: O(N), as we are using stack for extra space.



Previous Article
Next Article

Similar Reads

Postfix to Prefix Conversion
Postfix: An expression is called the postfix expression if the operator appears in the expression after the operands. Simply of the form (operand1 operand2 operator). Example : AB+CD-* (Infix : (A+B) * (C-D) ) Prefix : An expression is called the prefix expression if the operator appears in the expression before the operands. Simply of the form (op
7 min read
Why do we need Prefix and Postfix notations?
Prefix Notation: Prefix notation is the notation in which operators are placed before the corresponding operands in the expression. Example: Infix notation: A + B Prefix notation: +AB Postfix Notation: Postfix notation is the notation in which operators are placed after the corresponding operands in the expression. Example: Infix notation: A + B Po
1 min read
Prefix to Postfix Converter Online
Prefix to Postfix Calculator is a free online tool to calculate the postfix of a prefix notation. In this converter user has to put the prefix notation in the input box and postfix notation will be displayed as a result. Prefix Expression: An expression is called the prefix expression if the operator appears in the expression before the operands. S
2 min read
Find original Array from given Array where each element is sum of prefix and postfix sum
Given an array arr[] of length N, where arr is derived from an array nums[] which is lost. Array arr[] is derived as: arr[i] = (nums[0] + nums[1] + ... + nums[i]) + (nums[i] + nums[i+1] + ... + nums[N-1]). The task is to find nums[] array of length N. Examples: Input: N = 4, arr[] = {9, 10, 11, 10}Output: {1, 2, 3, 2}Explanation: If nums[] = {1, 2,
10 min read
Infix, Postfix and Prefix Expressions/Notations
Mathematical formulas often involve complex expressions that require a clear understanding of the order of operations. To represent these expressions, we use different notations, each with its own advantages and disadvantages. In this article, we will explore three common expression notations: infix, prefix, and postfix. Table of Content Infix Expr
6 min read
Online Postfix to Prefix Converter
Our Postfix to Prefix converter tool helps you convert an expression written in postfix notation (Reverse Polish Notation) to its equivalent prefix notation (Polish Notation). Convert your postfix expressions to prefix notation easily with this free online tool. How to Use Postfix to Prefix Converter?Step 1: Enter your postfix expression in the tex
2 min read
Prefix to Infix Conversion
Infix : An expression is called the Infix expression if the operator appears in between the operands in the expression. Simply of the form (operand1 operator operand2). Example : (A+B) * (C-D) Prefix : An expression is called the prefix expression if the operator appears in the expression before the operands. Simply of the form (operator operand1 o
6 min read
Infix to Prefix conversion using two stacks
Infix: An expression is called the Infix expression if the operator appears in between the operands in the expression. Simply of the form (operand1 operator operand2). Example : (A+B) * (C-D) Prefix: An expression is called the prefix expression if the operator appears in the expression before the operands. Simply of the form (operator operand1 ope
13 min read
Maximum sum increasing subsequence from a prefix and a given element after prefix is must
Given an array of n positive integers, write a program to find the maximum sum of increasing subsequence from prefix till ith index and also including a given kth element which is after i, i.e., k &gt; i. Examples : Input: arr[] = {1, 101, 2, 3, 100, 4, 5} i-th index = 4 (Element at 4th index is 100) K-th index = 6 (Element at 6th index is 5.) Outp
14 min read
Check if count of substrings in S with string S1 as prefix and S2 as suffix is equal to that with S2 as prefix and S1 as suffix
Given three strings S, S1, and S2, the task is to check if the number of substrings that start and end with S1 and S2 is equal to the number of substrings that start and end with S2 and S1 or not. If found to be true, then print "Yes". Otherwise, print "No". Examples: Input: S = "helloworldworldhelloworld", S1 = "hello", S2 = "world"Output: NoExpla
8 min read
Practice Tags :
three90RightbarBannerImg