Open In App

Postfix to Prefix Conversion

Last Updated : 18 Apr, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

Postfix: An expression is called the postfix expression if the operator appears in the expression after the operands. Simply of the form (operand1 operand2 operator). 
Example : AB+CD-* (Infix : (A+B) * (C-D) )

Prefix : An expression is called the prefix expression if the operator appears in the expression before the operands. Simply of the form (operator operand1 operand2). 
Example : *+AB-CD (Infix : (A+B) * (C-D) )

Given a Postfix expression, convert it into a Prefix expression. 
Conversion of Postfix expression directly to Prefix without going through the process of converting them first to Infix and then to Prefix is much better in terms of computation and better understanding the expression (Computers evaluate using Postfix expression). 

Examples: 

Input :  Postfix : AB+CD-*
Output : Prefix :  *+AB-CD
Explanation : Postfix to Infix : (A+B) * (C-D)
              Infix to Prefix :  *+AB-CD

Input :  Postfix : ABC/-AK/L-*
Output : Prefix :  *-A/BC-/AKL
Explanation : Postfix to Infix : ((A-(B/C))*((A/K)-L))
              Infix to Prefix :  *-A/BC-/AKL 

Algorithm for Postfix to Prefix:

  • Read the Postfix expression from left to right
  • If the symbol is an operand, then push it onto the Stack
  • If the symbol is an operator, then pop two operands from the Stack 
    Create a string by concatenating the two operands and the operator before them. 
    string = operator + operand2 + operand1 
    And push the resultant string back to Stack
  • Repeat the above steps until end of Postfix expression.

 Below is the implementation of the above idea:

C++




// CPP Program to convert postfix to prefix
#include <bits/stdc++.h>
using namespace std;
 
// function to check if character is operator or not
bool isOperator(char x)
{
    switch (x) {
    case '+':
    case '-':
    case '/':
    case '*':
        return true;
    }
    return false;
}
 
// Convert postfix to Prefix expression
string postToPre(string post_exp)
{
    stack<string> s;
 
    // length of expression
    int length = post_exp.size();
 
    // reading from left to right
    for (int i = 0; i < length; i++) {
 
        // check if symbol is operator
        if (isOperator(post_exp[i])) {
 
            // pop two operands from stack
            string op1 = s.top();
            s.pop();
            string op2 = s.top();
            s.pop();
 
            // concat the operands and operator
            string temp = post_exp[i] + op2 + op1;
 
            // Push string temp back to stack
            s.push(temp);
        }
 
        // if symbol is an operand
        else {
 
            // push the operand to the stack
            s.push(string(1, post_exp[i]));
        }
    }
 
    string ans = "";
    while (!s.empty()) {
        ans += s.top();
        s.pop();
    }
    return ans;
}
 
// Driver Code
int main()
{
    string post_exp = "ABC/-AK/L-*";
 
    // Function call
    cout << "Prefix : " << postToPre(post_exp);
    return 0;
}


Java




// Java Program to convert postfix to prefix
import java.util.*;
 
class GFG {
 
    // function to check if character
    // is operator or not
    static boolean isOperator(char x)
    {
 
        switch (x) {
        case '+':
        case '-':
        case '/':
        case '*':
            return true;
        }
        return false;
    }
 
    // Convert postfix to Prefix expression
    static String postToPre(String post_exp)
    {
        Stack<String> s = new Stack<String>();
 
        // length of expression
        int length = post_exp.length();
 
        // reading from right to left
        for (int i = 0; i < length; i++) {
 
            // check if symbol is operator
            if (isOperator(post_exp.charAt(i))) {
 
                // pop two operands from stack
                String op1 = s.peek();
                s.pop();
                String op2 = s.peek();
                s.pop();
 
                // concat the operands and operator
                String temp
                    = post_exp.charAt(i) + op2 + op1;
 
                // Push String temp back to stack
                s.push(temp);
            }
 
            // if symbol is an operand
            else {
 
                // push the operand to the stack
                s.push(post_exp.charAt(i) + "");
            }
        }
 
        // concatenate all strings in stack and return the
        // answer
        String ans = "";
        for (String i : s)
            ans += i;
        return ans;
    }
 
    // Driver Code
    public static void main(String args[])
    {
        String post_exp = "ABC/-AK/L-*";
 
        // Function call
        System.out.println("Prefix : "
                           + postToPre(post_exp));
    }
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 Program to convert postfix to prefix
 
# function to check if
# character is operator or not
 
 
def isOperator(x):
 
    if x == "+":
        return True
 
    if x == "-":
        return True
 
    if x == "/":
        return True
 
    if x == "*":
        return True
 
    return False
 
# Convert postfix to Prefix expression
 
 
def postToPre(post_exp):
 
    s = []
 
    # length of expression
    length = len(post_exp)
 
    # reading from right to left
    for i in range(length):
 
        # check if symbol is operator
        if (isOperator(post_exp[i])):
 
            # pop two operands from stack
            op1 = s[-1]
            s.pop()
            op2 = s[-1]
            s.pop()
 
            # concat the operands and operator
            temp = post_exp[i] + op2 + op1
 
            # Push string temp back to stack
            s.append(temp)
 
        # if symbol is an operand
        else:
 
            # push the operand to the stack
            s.append(post_exp[i])
 
    
    ans = ""
    for i in s:
        ans += i
    return ans
 
 
# Driver Code
if __name__ == "__main__":
 
    post_exp = "AB+CD-"
     
    # Function call
    print("Prefix : ", postToPre(post_exp))
 
# This code is contributed by AnkitRai01


C#




// C# Program to convert postfix to prefix
using System;
using System.Collections;
 
class GFG {
 
    // function to check if character
    // is operator or not
    static Boolean isOperator(char x)
    {
 
        switch (x) {
        case '+':
        case '-':
        case '/':
        case '*':
            return true;
        }
        return false;
    }
 
    // Convert postfix to Prefix expression
    static String postToPre(String post_exp)
    {
        Stack s = new Stack();
 
        // length of expression
        int length = post_exp.Length;
 
        // reading from right to left
        for (int i = 0; i < length; i++) {
 
            // check if symbol is operator
            if (isOperator(post_exp[i])) {
 
                // Pop two operands from stack
                String op1 = (String)s.Peek();
                s.Pop();
                String op2 = (String)s.Peek();
                s.Pop();
 
                // concat the operands and operator
                String temp = post_exp[i] + op2 + op1;
 
                // Push String temp back to stack
                s.Push(temp);
            }
 
            // if symbol is an operand
            else {
 
                // Push the operand to the stack
                s.Push(post_exp[i] + "");
            }
        }
 
        String ans = "";
        while (s.Count > 0)
            ans += s.Pop();
        return ans;
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        String post_exp = "ABC/-AK/L-*";
       
        // Function call
        Console.WriteLine("Prefix : "
                          + postToPre(post_exp));
    }
}
 
// This code is contributed by Arnab Kundu


Javascript




<script>
    // Javascript Program to convert postfix to prefix
     
    // function to check if character
    // is operator or not
    function isOperator(x)
    {
  
        switch (x) {
        case '+':
        case '-':
        case '/':
        case '*':
            return true;
        }
        return false;
    }
  
    // Convert postfix to Prefix expression
    function postToPre(post_exp)
    {
        let s = [];
  
        // length of expression
        let length = post_exp.length;
  
        // reading from right to left
        for (let i = 0; i < length; i++) {
  
            // check if symbol is operator
            if (isOperator(post_exp[i])) {
  
                // Pop two operands from stack
                let op1 = s[s.length - 1];
                s.pop();
                let op2 = s[s.length - 1];
                s.pop();
  
                // concat the operands and operator
                let temp = post_exp[i] + op2 + op1;
  
                // Push String temp back to stack
                s.push(temp);
            }
  
            // if symbol is an operand
            else {
  
                // Push the operand to the stack
                s.push(post_exp[i] + "");
            }
        }
  
        let ans = "";
        while (s.length > 0)
            ans += s.pop();
        return ans;
    }
     
    let post_exp = "ABC/-AK/L-*";
        
    // Function call
    document.write("Prefix : " + postToPre(post_exp));
     
    // This code is contributed by suresh07.
</script>


Output

Prefix : *-A/BC-/AKL

Time Complexity: O(N) // In the above-given approach, there is one loop for iterating over string which takes O(N) time in worst case. Therefore, the time complexity for this approach will be O(N).
Auxiliary Space: O(N) // we are using an empty stack as well as empty string to store the expression hence space taken is linear



Previous Article
Next Article

Similar Reads

Prefix to Postfix Conversion
Given a Prefix expression, convert it into a Postfix expression. Conversion of Prefix expression directly to Postfix without going through the process of converting them first to Infix and then to Postfix is much better in terms of computation and better understanding the expression (Computers evaluate using Postfix expression). let's discuss about
6 min read
Why do we need Prefix and Postfix notations?
Prefix Notation: Prefix notation is the notation in which operators are placed before the corresponding operands in the expression. Example: Infix notation: A + B Prefix notation: +AB Postfix Notation: Postfix notation is the notation in which operators are placed after the corresponding operands in the expression. Example: Infix notation: A + B Po
1 min read
Prefix to Postfix Converter Online
Prefix to Postfix Calculator is a free online tool to calculate the postfix of a prefix notation. In this converter user has to put the prefix notation in the input box and postfix notation will be displayed as a result. Prefix Expression: An expression is called the prefix expression if the operator appears in the expression before the operands. S
2 min read
Find original Array from given Array where each element is sum of prefix and postfix sum
Given an array arr[] of length N, where arr is derived from an array nums[] which is lost. Array arr[] is derived as: arr[i] = (nums[0] + nums[1] + ... + nums[i]) + (nums[i] + nums[i+1] + ... + nums[N-1]). The task is to find nums[] array of length N. Examples: Input: N = 4, arr[] = {9, 10, 11, 10}Output: {1, 2, 3, 2}Explanation: If nums[] = {1, 2,
10 min read
Infix, Postfix and Prefix Expressions/Notations
Mathematical formulas often involve complex expressions that require a clear understanding of the order of operations. To represent these expressions, we use different notations, each with its own advantages and disadvantages. In this article, we will explore three common expression notations: infix, prefix, and postfix. Table of Content Infix Expr
6 min read
Online Postfix to Prefix Converter
Our Postfix to Prefix converter tool helps you convert an expression written in postfix notation (Reverse Polish Notation) to its equivalent prefix notation (Polish Notation). Convert your postfix expressions to prefix notation easily with this free online tool. How to Use Postfix to Prefix Converter?Step 1: Enter your postfix expression in the tex
2 min read
Prefix to Infix Conversion
Infix : An expression is called the Infix expression if the operator appears in between the operands in the expression. Simply of the form (operand1 operator operand2). Example : (A+B) * (C-D) Prefix : An expression is called the prefix expression if the operator appears in the expression before the operands. Simply of the form (operator operand1 o
6 min read
Infix to Prefix conversion using two stacks
Infix: An expression is called the Infix expression if the operator appears in between the operands in the expression. Simply of the form (operand1 operator operand2). Example : (A+B) * (C-D) Prefix: An expression is called the prefix expression if the operator appears in the expression before the operands. Simply of the form (operator operand1 ope
13 min read
Maximum sum increasing subsequence from a prefix and a given element after prefix is must
Given an array of n positive integers, write a program to find the maximum sum of increasing subsequence from prefix till ith index and also including a given kth element which is after i, i.e., k &gt; i. Examples : Input: arr[] = {1, 101, 2, 3, 100, 4, 5} i-th index = 4 (Element at 4th index is 100) K-th index = 6 (Element at 6th index is 5.) Outp
14 min read
Check if count of substrings in S with string S1 as prefix and S2 as suffix is equal to that with S2 as prefix and S1 as suffix
Given three strings S, S1, and S2, the task is to check if the number of substrings that start and end with S1 and S2 is equal to the number of substrings that start and end with S2 and S1 or not. If found to be true, then print "Yes". Otherwise, print "No". Examples: Input: S = "helloworldworldhelloworld", S1 = "hello", S2 = "world"Output: NoExpla
8 min read
three90RightbarBannerImg