Open In App

Next Greater Frequency Element

Last Updated : 14 Dec, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

Given an array, for each element find the value of the nearest element to the right which is having a frequency greater than that of the current element. If there does not exist an answer for a position, then make the value ‘-1’.

Examples: 

Input : a[] = [1, 1, 2, 3, 4, 2, 1] 
Output : [-1, -1, 1, 2, 2, 1, -1]

Explanation:
Given array a[] = [1, 1, 2, 3, 4, 2, 1]
Frequency of each element is: 3, 3, 2, 1, 1, 2, 3

Lets calls Next Greater Frequency element as NGF
1. For element a[0] = 1 which has a frequency = 3,
As it has frequency of 3 and no other next element
has frequency more than 3 so '-1'
2. For element a[1] = 1 it will be -1 same logic
like a[0]
3. For element a[2] = 2 which has frequency = 2,
NGF element is 1 at position = 6 with frequency
of 3 > 2
4. For element a[3] = 3 which has frequency = 1,
NGF element is 2 at position = 5 with frequency
of 2 > 1
5. For element a[4] = 4 which has frequency = 1,
NGF element is 2 at position = 5 with frequency
of 2 > 1
6. For element a[5] = 2 which has frequency = 2,
NGF element is 1 at position = 6 with frequency
of 3 > 2
7. For element a[6] = 1 there is no element to its
right, hence -1
Input : a[] = [1, 1, 1, 2, 2, 2, 2, 11, 3, 3]
Output : [2, 2, 2, -1, -1, -1, -1, 3, -1, -1]

Naive approach: 

A simple hashing technique is to use values as the index is being used to store the frequency of each element. Create a list suppose to store the frequency of each number in the array. (Single traversal is required). Now use two loops. 
The outer loop picks all the elements one by one. 
The inner loop looks for the first element whose frequency is greater than the frequency of the current element. 
If a greater frequency element is found then that element is printed, otherwise -1 is printed. 

Time complexity: O(n*n)

Efficient approach

We can use hashing and stack data structure to efficiently solve for many cases. A simple hashing technique is to use values as index and frequency of each element as value. We use the stack data structure to store the position of elements in the array.

  1. Create a list to use values as index to store frequency of each element. 
  2. Push the position of first element to stack. 
  3. Pick rest of the position of elements one by one and follow following steps in loop. 
    1. Mark the position of current element as ‘i’ . 
    2. If the frequency of the element which is pointed by the top of stack is greater than frequency of the current element, push the current position i to the stack 
    3. If the frequency of the element which is pointed by the top of stack is less than frequency of the current element and the stack is not empty then follow these steps: 
      1. continue popping the stack 
      2. if the condition in step c fails then push the current position i to the stack 
  4. After the loop in step 3 is over, pop all the elements from stack and print -1 as next greater frequency element for them does not exist.

Below is the implementation of the above problem. 

C++




// C++ program of Next Greater Frequency Element
#include <iostream>
#include <stack>
#include <stdio.h>
 
using namespace std;
 
/*NFG function to find the next greater frequency
element for each element in the array*/
void NFG(int a[], int n, int freq[])
{
 
    // stack data structure to store the position
    // of array element
    stack<int> s;
    s.push(0);
 
    // res to store the value of next greater
    // frequency element for each element
    int res[n] = { 0 };
    for (int i = 1; i < n; i++)
    {
        /* If the frequency of the element which is
            pointed by the top of stack is greater
            than frequency of the current element
            then push the current position i in stack*/
 
        if (freq[a[s.top()]] > freq[a[i]])
            s.push(i);
        else {
            /*If the frequency of the element which
            is pointed by the top of stack is less
            than frequency of the current element, then
            pop the stack and continuing popping until
            the above condition is true while the stack
            is not empty*/
 
            while ( !s.empty()
                   && freq[a[s.top()]] < freq[a[i]])
            {
 
                res[s.top()] = a[i];
                s.pop();
            }
            //  now push the current element
            s.push(i);
        }
    }
 
    while (!s.empty()) {
        res[s.top()] = -1;
        s.pop();
    }
    for (int i = 0; i < n; i++)
    {
        // Print the res list containing next
        // greater frequency element
        cout << res[i] << " ";
    }
}
 
// Driver code
int main()
{
 
    int a[] = { 1, 1, 2, 3, 4, 2, 1 };
    int len = 7;
    int max = INT16_MIN;
    for (int i = 0; i < len; i++)
    {
        // Getting the max element of the array
        if (a[i] > max) {
            max = a[i];
        }
    }
    int freq[max + 1] = { 0 };
 
    // Calculating frequency of each element
    for (int i = 0; i < len; i++)
    {
        freq[a[i]]++;
    }
 
    // Function call
    NFG(a, len, freq);
    return 0;
}


Java




// Java program of Next Greater Frequency Element
import java.util.*;
 
class GFG {
 
    /*NFG function to find the next greater frequency
    element for each element in the array*/
    static void NFG(int a[], int n, int freq[])
    {
 
        // stack data structure to store the position
        // of array element
        Stack<Integer> s = new Stack<Integer>();
        s.push(0);
 
        // res to store the value of next greater
        // frequency element for each element
        int res[] = new int[n];
        for (int i = 0; i < n; i++)
            res[i] = 0;
 
        for (int i = 1; i < n; i++)
        {
            /* If the frequency of the element which is
                pointed by the top of stack is greater
                than frequency of the current element
                then push the current position i in stack*/
 
            if (freq[a[s.peek()]] > freq[a[i]])
                s.push(i);
            else
            {
                /*If the frequency of the element which
                is pointed by the top of stack is less
                than frequency of the current element, then
                pop the stack and continuing popping until
                the above condition is true while the stack
                is not empty*/
 
                while (freq[a[s.peek()]] < freq[a[i]]
                       && s.size() > 0)
                {
                    res[s.peek()] = a[i];
                    s.pop();
                }
 
                // now push the current element
                s.push(i);
            }
        }
 
        while (s.size() > 0)
        {
            res[s.peek()] = -1;
            s.pop();
        }
 
        for (int i = 0; i < n; i++)
        {
            // Print the res list containing next
            // greater frequency element
            System.out.print(res[i] + " ");
        }
    }
 
    // Driver code
    public static void main(String args[])
    {
 
        int a[] = { 1, 1, 2, 3, 4, 2, 1 };
        int len = 7;
        int max = Integer.MIN_VALUE;
        for (int i = 0; i < len; i++)
        {
            // Getting the max element of the array
            if (a[i] > max)
            {
                max = a[i];
            }
        }
        int freq[] = new int[max + 1];
 
        for (int i = 0; i < max + 1; i++)
            freq[i] = 0;
 
        // Calculating frequency of each element
        for (int i = 0; i < len; i++)
        {
            freq[a[i]]++;
        }
        // Function call
        NFG(a, len, freq);
    }
}
 
// This code is contributed by Arnab Kundu


Python3




def NFG(a, n):
    if n <= 0:
        print("List empty")
        return []
 
    # stack data structure to store the position
    # of array element
    stack = [0] * n
 
    # freq is a dictionary which maintains the
    # frequency of each element
    freq = {}
    for i in a:
        freq[i] = 0
    for i in a:
        freq[i] += 1
 
    # res to store the value of the next greater
    # frequency element for each element
    res = [0] * n
 
    # initialize top of stack to -1
    top = -1
 
    # push the first position of the array onto the stack
    top += 1
    stack[top] = 0
 
    # now iterate for the rest of the elements
    for i in range(1, n):
        if freq[a[stack[top]]] > freq[a[i]]:
            top += 1
            stack[top] = i
        else:
            while top > -1 and freq[a[stack[top]]] < freq[a[i]]:
                res[stack[top]] = a[i]
                top -= 1
            top += 1
            stack[top] = i
 
    # After iterating over the loop, the remaining
    # positions of elements in the stack do not have the
    # next greater element, so print -1 for them
    while top > -1:
        res[stack[top]] = -1
        top -= 1
 
    # return the res list containing the next
    # greater frequency element
    return res
 
# Driver Code
print(NFG([1, 1, 2, 3, 4, 2, 1], 7))


C#




// C# program of Next Greater Frequency Element
using System;
using System.Collections;
 
class GFG {
 
    /*NFG function to find the
    next greater frequency
    element for each element
    in the array*/
    static void NFG(int[] a, int n, int[] freq)
    {
 
        // stack data structure to store
        // the position of array element
        Stack s = new Stack();
        s.Push(0);
 
        // res to store the value of next greater
        // frequency element for each element
        int[] res = new int[n];
        for (int i = 0; i < n; i++)
            res[i] = 0;
 
        for (int i = 1; i < n; i++)
        {
            /* If the frequency of the element which is
                pointed by the top of stack is greater
                than frequency of the current element
                then Push the current position i in stack*/
 
            if (freq[a[(int)s.Peek()]] > freq[a[i]])
                s.Push(i);
            else
            {
                /*If the frequency of the element which
                is pointed by the top of stack is less
                than frequency of the current element, then
                Pop the stack and continuing Popping until
                the above condition is true while the stack
                is not empty*/
 
                while (freq[a[(int)(int)s.Peek()]]
                           < freq[a[i]]
                       && s.Count > 0)
                {
                    res[(int)s.Peek()] = a[i];
                    s.Pop();
                }
 
                // now Push the current element
                s.Push(i);
            }
        }
 
        while (s.Count > 0)
        {
            res[(int)s.Peek()] = -1;
            s.Pop();
        }
 
        for (int i = 0; i < n; i++)
        {
            // Print the res list containing next
            // greater frequency element
            Console.Write(res[i] + " ");
        }
    }
 
    // Driver code
    public static void Main(String[] args)
    {
 
        int[] a = { 1, 1, 2, 3, 4, 2, 1 };
        int len = 7;
        int max = int.MinValue;
        for (int i = 0; i < len; i++)
        {
            // Getting the max element of the array
            if (a[i] > max)
            {
                max = a[i];
            }
        }
        int[] freq = new int[max + 1];
 
        for (int i = 0; i < max + 1; i++)
            freq[i] = 0;
 
        // Calculating frequency of each element
        for (int i = 0; i < len; i++)
        {
            freq[a[i]]++;
        }
        NFG(a, len, freq);
    }
}
 
// This code is contributed by Arnab Kundu


Javascript




<script>
    // Javascript program of Next Greater Frequency Element
     
    /*NFG function to find the
    next greater frequency
    element for each element
    in the array*/
    function NFG(a, n, freq)
    {
  
        // stack data structure to store
        // the position of array element
        let s = [];
        s.push(0);
  
        // res to store the value of next greater
        // frequency element for each element
        let res = new Array(n);
        for (let i = 0; i < n; i++)
            res[i] = 0;
  
        for (let i = 1; i < n; i++)
        {
         
            /* If the frequency of the element which is
                pointed by the top of stack is greater
                than frequency of the current element
                then Push the current position i in stack*/
  
            if (freq[a[s[s.length - 1]]] > freq[a[i]])
                s.push(i);
            else
            {
             
                /*If the frequency of the element which
                is pointed by the top of stack is less
                than frequency of the current element, then
                Pop the stack and continuing Popping until
                the above condition is true while the stack
                is not empty*/
  
                while (freq[a[s[s.length - 1]]]
                           < freq[a[i]]
                       && s.length > 0)
                {
                    res[s[s.length - 1]] = a[i];
                    s.pop();
                }
  
                // now Push the current element
                s.push(i);
            }
        }
  
        while (s.length > 0)
        {
            res[s[s.length - 1]] = -1;
            s.pop();
        }
         document.write("[");
        for (let i = 0; i < n - 1; i++)
        {
         
            // Print the res list containing next
            // greater frequency element
            document.write(res[i] + ", ");
        }
        document.write(res[n - 1] + "]");
    }
     
    let a = [ 1, 1, 2, 3, 4, 2, 1 ];
    let len = 7;
    let max = Number.MIN_VALUE;
    for (let i = 0; i < len; i++)
    {
     
      // Getting the max element of the array
      if (a[i] > max)
      {
        max = a[i];
      }
    }
    let freq = new Array(max + 1);
 
    for (let i = 0; i < max + 1; i++)
      freq[i] = 0;
 
    // Calculating frequency of each element
    for (let i = 0; i < len; i++)
    {
      freq[a[i]]++;
    }
    NFG(a, len, freq);
     
    // This code is contributed by vaibhavrabadiya117.
</script>


Output

-1 -1 1 2 2 1 -1 

Time complexity: O(n)
Auxiliary space: O(n)

The Next To Brute Force/Brute Force:

    The Approach:

        The approach is simple we just store the frequency of all element in map then push all element in reverse order to the stack as we know the nature of stack is LIFO so then we traverse over vector and find the next greater for every element in vector using stack ans map.

C++




#include <iostream>
#include<bits/stdc++.h>
using namespace std;
 
int main() {
     vector<int>v{1, 1, 2, 3, 4, 2, 1};
     int n=v.size();
     map<int,int>mp;
     stack<int>s;
     for(auto it:v){
       mp[it]++;
     }
     for(int i=n-1;i>=0;i--)s.push(v[i]);
     for(int i=0;i<n;i++){
       int x=mp[v[i]];
       bool flag=1;
       stack<int>ss(s);
       while(!ss.empty()){
         if(mp[ss.top()]>x){
           cout<<v[i]<<" --> "<<ss.top()<<endl;
           flag=0;
           break;
         }
         ss.pop();
       }
       if(flag)cout<<v[i]<<" --> "<<-1<<endl;
       s.pop();
     }
      
    return 0;
}


Java




import java.util.*;
 
class Main {
  public static void main(String[] args)
  {
    List<Integer> v
      = Arrays.asList(1, 1, 2, 3, 4, 2, 1);
    int n = v.size();
    Map<Integer, Integer> mp = new HashMap<>();
    Stack<Integer> s = new Stack<>();
 
    for (int i : v) {
      mp.put(i, mp.getOrDefault(i, 0) + 1);
    }
 
    for (int i = n - 1; i >= 0; i--)
      s.push(v.get(i));
 
    for (int i = 0; i < n; i++) {
      int x = mp.get(v.get(i));
      boolean flag = true;
      Stack<Integer> ss = (Stack<Integer>)s.clone();
      while (!ss.empty()) {
        if (mp.get(ss.peek()) > x) {
          System.out.println(v.get(i) + " --> "
                             + ss.peek());
          flag = false;
          break;
        }
        ss.pop();
      }
      if (flag)
        System.out.println(v.get(i) + " --> " + -1);
      s.pop();
    }
  }
}
 
// This code is contributed by divyansh2212


Python3




from collections import defaultdict
 
def main():
    v = [1, 1, 2, 3, 4, 2, 1]
    n = len(v)
    mp = defaultdict(int)
    s = []
    for x in v:
        mp[x] += 1
    for i in range(n-1, -1, -1):
        s.append(v[i])
    for i in range(n):
        x = mp[v[i]]
        flag = True
        ss = list(s)
        while ss:
            if mp[ss[-1]] > x:
                print(v[i], "-->", ss[-1])
                flag = False
                break
            ss.pop()
        if flag:
            print(v[i], "-->", -1)
        s.pop()
 
if __name__ == "__main__":
    main()


C#




// C# program for the above approach
 
using System;
using System.Collections;
using System.Collections.Generic;
 
 
class GFG {
    
   
    static void Main() {
         
        int[] v = {1, 1, 2, 3, 4, 2, 1};
        int n=v.Length;
         
        Dictionary<int, int> mp =  new Dictionary<int, int>();
        Stack s = new Stack();
         
        for(int i = 0; i < v.Length; i++){
             
            if(mp.ContainsKey(v[i]) == true){
                mp[v[i]] = mp[v[i]] + 1;
            }
            else{
                mp.Add(v[i], 1);
            }
        }
         
        for(int i=n-1;i>=0;i--){
            s.Push(v[i]);
        }
         
        for(int i=0;i<n;i++){
             
            int x = mp[v[i]];
            int flag=1;
                         
            Stack ss = (Stack)s.Clone();
 
            while(ss.Count > 0){
                int val = (int)ss.Peek();
                if(mp[val]>x){
                    Console.WriteLine(v[i] + " --> " + val);
                    flag=0;
                    break;
                }
                ss.Pop();
            }
             
            if(flag != 0){
                Console.WriteLine(v[i] + " --> -1");
            }
            s.Pop();
        }
    }
}
 
// The code is contributed by Arushi Jindal.


Javascript




let v = [1, 1, 2, 3, 4, 2, 1];
let n=v.length;
let mp = new Map();
let s = [];
 
for (let i = 0; i < n; i++){
    if(mp.has(v[i]))
        mp.set(v[i], mp.get(v[i])+1)
    else
        mp.set(v[i], 1)
}
 
 
for(let i=n-1;i>=0;i--) s.push(v[i]);
 
for(let i=0; i < n; i++){
    let x= mp.get(v[i]);
    let flag=1;
    let ss = new Array(s.length);
    for(let i = 0; i < s.length; i++){
        ss[i] = s[i];
    }
     
    while(ss.length > 0){
        if(mp.get(ss[ss.length - 1]) > x){
            document.write(v[i] + " --> " + ss[ss.length - 1]);
            flag=0;
            break;
        }
        ss.pop();
    }
     
    if(flag)document.write(v[i] + " --> " + -1);
    s.pop();
}
 
// The code is contributed by Gautam goel


Output

1 --> -1
1 --> -1
2 --> 1
3 --> 2
4 --> 2
2 --> 1
1 --> -1

Time complexity: O(n^2),for worst case.
Auxiliary space: O(2n),for map and stack.

Space Efficient Approach: using a hash map instead of a list as mentioned in the above approach.

Steps:

  1. Create a class pair to store pair<int, int> with pair<element, frequency>.
  2. Create a hash map with pair as generics to store keys as the element and values as the frequency of every element.
  3. Iterate the array and save the element and its frequency in the hashmap.
  4. Create a res array that stores the resultant array.
  5. Initially make res[n-1] = -1 and push the element in the end along with its frequency into the stack.
  6. Iterate through the array in reverse order.
  7. If the frequency of the element which is pointed at the top of the stack is less than the frequency of the current element and the stack is not empty then pop.
  8. Continue till the loop fails.
  9. If the stack is empty, it means that there is no element with a higher frequency. So, place -1 as the next higher frequency element in the resultant array.
  10. If the stack is not empty, it means that the top of the stack has a higher frequency element. Put it in the resultant array as the next higher frequency.
  11. Push the current element along with its frequency.

Implementation:

C++




// C++ program of Next Greater Frequency Element
#include <bits/stdc++.h>
using namespace std;
 
stack<pair<int,int>> mystack;
map<int, int> mymap;
  
/*NFG function to find the next greater frequency
element for each element and for placing it in the
resultant array */
void NGF(int arr[], int res[], int n) {
       
    // Initially store the frequencies of all elements
    // in a hashmap
    for(int i = 0; i < n; i++) {
        mymap[arr[i]] += 1;
    }
       
    // Get the frequency of the last element
    int curr_freq = mymap[arr[n-1]];
    
    // push it to the stack
    mystack.push({arr[n-1], curr_freq});
    
    // place -1 as next greater freq for the last
    // element as it does not have next greater.
    res[n-1] = -1;
       
    // iterate through array in reverse order
    for(int i = n-2;i>=0;i--) {
        curr_freq = mymap[arr[i]];
           
        /* If the frequency of the element which is
        pointed by the top of stack is greater
        than frequency of the current element
        then push the current position i in stack*/
        while(mystack.size() > 0  &&  curr_freq >= mystack.top().second)
            mystack.pop();
           
        // If the stack is empty, place -1. If it is not empty
        // then we will have next higher freq element at the top of the stack.
        res[i] = (mystack.size() == 0) ? -1 : mystack.top().first;
           
        // push the element at current position
        mystack.push({arr[i], mymap[arr[i]]});
    }
}
     
int main()
{
    int arr[] = {1, 1, 1, 2, 2, 2, 2, 11, 3, 3};
    int n = sizeof(arr) / sizeof(arr[0]);
       
    int res[n];
    NGF(arr, res, n);
    cout << "[";
    for(int i = 0; i < n - 1; i++)
    {
        cout << res[i] << ", ";
    }
    cout << res[n - 1] << "]";
 
    return 0;
}
 
// This code is contributed by divyeshrabadiya07.


Java




// Java program of Next Greater Frequency Element
import java.util.*;
 
class GFG {
    Stack<Pair> mystack = new Stack<>();
    HashMap<Integer,Integer> mymap = new HashMap<>();
     
    class Pair{
        int data;
        int freq;
        Pair(int data,int freq){
            this.data = data;
            this.freq = freq;
        }
    }
     
    /*NFG function to find the next greater frequency
    element for each element and for placing it in the
    resultant array */
    void NGF(int[] arr,int[] res) {
        int n = arr.length;
         
        //Initially store the frequencies of all elements
        //in a hashmap
        for(int i = 0;i<n;i++) {
            if(mymap.containsKey(arr[i]))
                mymap.put(arr[i], mymap.get(arr[i]) + 1);
            else
                mymap.put(arr[i], 1);
        }
         
        //Get the frequency of the last element
        int curr_freq = mymap.get(arr[n-1]);
        //push it to the stack
        mystack.push(new Pair(arr[n-1],curr_freq));
        //place -1 as next greater freq for the last
        //element as it does not have next greater.
        res[n-1] = -1;
         
        //iterate through array in reverse order
        for(int i = n-2;i>=0;i--) {
            curr_freq = mymap.get(arr[i]);
             
            /* If the frequency of the element which is
            pointed by the top of stack is greater
            than frequency of the current element
            then push the current position i in stack*/
            while(!mystack.isEmpty()  &&  curr_freq >= mystack.peek().freq)
                mystack.pop();
             
            //If the stack is empty, place -1. If it is not empty
            //then we will have next higher freq element at the top of the stack.
            res[i] = (mystack.isEmpty()) ? -1 : mystack.peek().data;
             
            //push the element at current position
            mystack.push(new Pair(arr[i],mymap.get(arr[i])));
        }
    }
     
    //Driver function
    public static void main(String args[]) {
        GFG obj = new GFG();
        int[] arr = {1, 1, 1, 2, 2, 2, 2, 11, 3, 3};
         
        int res[] = new int[arr.length];
        obj.NGF(arr, res);
        System.out.println(Arrays.toString(res));
    }
}
 
//This method is contributed by Likhita AVL


Python3




# Python3 program of Next Greater Frequency Element
 
mystack = []
mymap = {}
  
"""NFG function to find the next greater frequency
element for each element and for placing it in the
resultant array """
def NGF(arr, res):
    n = len(arr)
      
    # Initially store the frequencies of all elements
    # in a hashmap
    for i in range(n):
        if arr[i] in mymap:
            mymap[arr[i]] += 1
        else:
            mymap[arr[i]] = 1
      
    # Get the frequency of the last element
    curr_freq = mymap[arr[n-1]]
     
    # push it to the stack
    mystack.append([arr[n-1],curr_freq])
     
    # place -1 as next greater freq for the last
    # element as it does not have next greater.
    res[n-1] = -1
      
    # iterate through array in reverse order
    for i in range(n - 2, -1, -1):
        curr_freq = mymap[arr[i]]
          
        """ If the frequency of the element which is
        pointed by the top of stack is greater
        than frequency of the current element
        then push the current position i in stack"""
        while len(mystack) > 0  and  curr_freq >= mystack[-1][1]:
            mystack.pop()
          
        # If the stack is empty, place -1. If it is not empty
        # then we will have next higher freq element at the top of the stack.
        if (len(mystack) == 0):
            res[i] = -1
        else:
            res[i] = mystack[-1][0]
          
        # push the element at current position
        mystack.append([arr[i],mymap[arr[i]]])
 
arr = [1, 1, 1, 2, 2, 2, 2, 11, 3, 3]
  
res = [0]*(len(arr))
NGF(arr, res)
print(res)
 
# This code is contributed by rameshtravel07.


C#




// C# program of Next Greater Frequency Element
using System;
using System.Collections.Generic;
class GFG {
     
    static Stack<Tuple<int,int>> mystack = new Stack<Tuple<int,int>>();
    static Dictionary<int, int> mymap = new Dictionary<int, int>();
     
    /*NFG function to find the next greater frequency
    element for each element and for placing it in the
    resultant array */
    static void NGF(int[] arr,int[] res) {
        int n = arr.Length;
          
        // Initially store the frequencies of all elements
        // in a hashmap
        for(int i = 0; i < n; i++) {
            if(mymap.ContainsKey(arr[i]))
                mymap[arr[i]] = mymap[arr[i]] + 1;
            else
                mymap[arr[i]] = 1;
        }
          
        // Get the frequency of the last element
        int curr_freq = mymap[arr[n-1]];
       
        // push it to the stack
        mystack.Push(new Tuple<int,int>(arr[n-1],curr_freq));
       
        // place -1 as next greater freq for the last
        // element as it does not have next greater.
        res[n-1] = -1;
          
        // iterate through array in reverse order
        for(int i = n-2;i>=0;i--) {
            curr_freq = mymap[arr[i]];
              
            /* If the frequency of the element which is
            pointed by the top of stack is greater
            than frequency of the current element
            then push the current position i in stack*/
            while(mystack.Count > 0  &&  curr_freq >= mystack.Peek().Item2)
                mystack.Pop();
              
            // If the stack is empty, place -1. If it is not empty
            // then we will have next higher freq element at the top of the stack.
            res[i] = (mystack.Count == 0) ? -1 : mystack.Peek().Item1;
              
            // push the element at current position
            mystack.Push(new Tuple<int,int>(arr[i],mymap[arr[i]]));
        }
    }
     
  // Driver code
  static void Main() {
    int[] arr = {1, 1, 1, 2, 2, 2, 2, 11, 3, 3};
      
    int[] res = new int[arr.Length];
    NGF(arr, res);
    Console.Write("[");
    for(int i = 0; i < arr.Length - 1; i++)
    {
        Console.Write(res[i] + ", ");
    }
    Console.Write(res[arr.Length - 1] + "]");
  }
}
 
// This code is contributed by mukesh07.


Javascript




<script>
// Javascript program of Next Greater Frequency Element
 
class Pair
{
    constructor(data,freq)
    {
        this.data = data;
            this.freq = freq;
    }
}
 
let mystack = [];
let  mymap = new Map();
 
/*NFG function to find the next greater frequency
    element for each element and for placing it in the
    resultant array */
function NGF(arr,res)
{
    let n = arr.length;
          
        //Initially store the frequencies of all elements
        //in a hashmap
        for(let i = 0;i<n;i++) {
            if(mymap.has(arr[i]))
                mymap.set(arr[i], mymap.get(arr[i]) + 1);
            else
                mymap.set(arr[i], 1);
        }
          
        // Get the frequency of the last element
        let curr_freq = mymap.get(arr[n-1]);
         
        // push it to the stack
        mystack.push(new Pair(arr[n-1],curr_freq));
         
        // place -1 as next greater freq for the last
        // element as it does not have next greater.
        res[n-1] = -1;
          
        // iterate through array in reverse order
        for(let i = n - 2; i >= 0; i--)
        {
            curr_freq = mymap.get(arr[i]);
              
            /* If the frequency of the element which is
            pointed by the top of stack is greater
            than frequency of the current element
            then push the current position i in stack*/
            while(mystack.length!=0  &&  curr_freq >= mystack[mystack.length-1].freq)
                mystack.pop();
              
            // If the stack is empty, place -1. If it is not empty
            // then we will have next higher freq element at the top of the stack.
            res[i] = (mystack.length==0) ? -1 : mystack[mystack.length-1].data;
              
            // push the element at current position
            mystack.push(new Pair(arr[i],mymap.get(arr[i])));
        }
}
 
// Driver function
let arr=[1, 1, 1, 2, 2, 2, 2, 11, 3, 3];
let res = new Array(arr.length);
NGF(arr, res);
document.write((res).join(" "));
 
// This code is contributed by avanitrachhadiya2155
</script>


Output

[2, 2, 2, -1, -1, -1, -1, 3, -1, -1]

Time Complexity: O(n)
Auxiliary Space: O(n) for hashmap and stack

Thank you Koustav for your valuable support.  



Previous Article
Next Article

Similar Reads

Maximum difference between frequency of two elements such that element having greater frequency is also greater
Given an array of n positive integers with many repeating elements. The task is to find the maximum difference between the frequency of any two different elements, such that the element with greater frequency is also greater in value than the second integer. Examples: Input : arr[] = { 3, 1, 3, 2, 3, 2 }. Output : 2 Frequency of 3 = 3. Frequency of
12 min read
Find next Smaller of next Greater in an array
Given array of integer, find the next smaller of next greater element of every element in array. Note : Elements for which no greater element exists or no smaller of greater element exist, print -1. Examples: Input : arr[] = {5, 1, 9, 2, 5, 1, 7} Output: 2 2 -1 1 -1 -1 -1 Explanation : Next Greater -&gt; Right Smaller 5 -&gt; 9 9 -&gt; 2 1 -&gt; 9
14 min read
Next Greater Element (NGE) for every element in given Array
Given an array, print the Next Greater Element (NGE) for every element. The Next greater Element for an element x is the first greater element on the right side of x in the array. Elements for which no greater element exist, consider the next greater element as -1. Examples: Input: arr[] = [ 4 , 5 , 2 , 25 ]Output: 4 --&gt; 5 5 --&gt; 25 2 --&gt; 2
15 min read
Remaining array element after repeated removal of last element and subtraction of each element from next adjacent element
Given an array arr[] consisting of N integers, the task is to find the remaining array element after subtracting each element from its next adjacent element and removing the last array element repeatedly. Examples: Input: arr[] = {3, 4, 2, 1}Output: 4Explanation:Operation 1: The array arr[] modifies to {4 - 3, 2 - 4, 1 - 2} = {1, -2, -1}.Operation
8 min read
Smallest subarray having an element with frequency greater than that of other elements
Given an array arr of positive integers, the task is to find the smallest length subarray of length more than 1 having an element occurring more times than any other element. Examples: Input: arr[] = {2, 3, 2, 4, 5} Output: 2 3 2 Explanation: The subarray {2, 3, 2} has an element 2 which occurs more number of times any other element in the subarray
15+ min read
Find element in a sorted array whose frequency is greater than or equal to n/2.
Given a sorted array of length n, find the number in array that appears more than or equal to n/2 times. It is given that such element always exists. Examples: Input : 2 3 3 4 Output : 3 Input : 3 4 5 5 5 Output : 5 Input : 1 1 1 2 3 Output : 1 To find that number, we traverse the array and check the frequency of every element in array if it is gre
3 min read
Find Next greater element in Binary Search Tree
Given a binary search tree and a target value, the task is to find the next greater element of the target value in the binary search tree. Examples: Input: 5 / \ 3 7 / \ / \ 2 4 6 8 Target: 4Output: 5Explanation: The next greater element of 4 is 5 Input: 4 / \ 2 6 / \ \ 1 3 8 Target: 6Output: 8Explanation: The next greater element of 6 is 8 Approac
12 min read
Next Greater Element in a Circular Linked List
Given a circular singly linked list, the task is to print the next greater element for each node in the linked list. If there is no next greater element for any node, then print "-1" for that node. Examples: Input: head = 1 ? 5 ? 2 ? 10 ? 0 ? (head)Output: 5 10 10 -1 -1Explanation:The next greater elements of each node are: Node 1: Next greater ele
11 min read
Elements greater than the previous and next element in an Array
Given an array of N integers. The task is to print the elements from the array which are greater than their immediate previous and next elements.Examples : Input : arr[] = {2, 3, 1, 5, 4, 9, 8, 7, 5} Output : 3, 5, 9 In above given example 3 is greater than its left element 2 and right element 1. Similar logic is applied to other elements hence our
5 min read
Find next greater element with no consecutive 1 in it's binary representation
Given Q queries where each query consists of an integer N and the task is to find the smallest integer greater than N such that there are no consecutive 1s in its binary representation. Examples: Input: Q[] = {4, 6} Output: 5 8 Input: Q[] = {50, 23, 456} Output: 64 32 512 Approach: Store all the numbers in a list whose binary representation does no
8 min read
Article Tags :
Practice Tags :
three90RightbarBannerImg