Open In App

Check if a queue can be sorted into another queue using a stack

Last Updated : 17 Aug, 2022
Improve
Improve
Like Article
Like
Save
Share
Report

Given a Queue consisting of first n natural numbers (in random order). The task is to check whether the given Queue elements can be arranged in increasing order in another Queue using a stack. The operation allowed are: 

  1. Push and pop elements from the stack 
  2. Pop (Or Dequeue) from the given Queue. 
  3. Push (Or Enqueue) in the another Queue.

Examples :

Input : Queue[] = { 5, 1, 2, 3, 4 } 
Output : Yes 
Pop the first element of the given Queue i.e 5. 
Push 5 into the stack. 
Now, pop all the elements of the given Queue and push them to 
second Queue. 
Now, pop element 5 in the stack and push it to the second Queue. 
  
Input : Queue[] = { 5, 1, 2, 6, 3, 4 } 
Output : No 
Push 5 to stack. 
Pop 1, 2 from given Queue and push it to another Queue. 
Pop 6 from given Queue and push to stack. 
Pop 3, 4 from given Queue and push to second Queue. 
Now, from using any of above operation, we cannot push 5 
into the second Queue because it is below the 6 in the stack. 

Observe, second Queue (which will contain the sorted element) takes inputs (or enqueue elements) either from given Queue or Stack. So, the next expected (which will initially be 1) element must be present as a front element of a given Queue or top element of the Stack. So, simply simulate the process for the second Queue by initializing the expected element as 1. And check if we can get the expected element from the front of the given Queue or from the top of the Stack. If we cannot take it from either of them then pop the front element of the given Queue and push it in the Stack. 

Also, observe, that the stack must also be sorted at each instance i.e the element at the top of the stack must be the smallest in the stack. For eg. let x > y, then x will always be expected before y. So, x cannot be pushed before y in the stack. Therefore, we cannot push an element with a higher value on the top of the element having a lesser value.

Algorithm: 

  1. Initialize the expected_element = 1 
  2. Check if either front element of given Queue or top element of the stack have expected_element 
    1. If yes, increment expected_element by 1, repeat step 2. 
    2. Else, pop front of Queue and push it to the stack. If the popped element is greater than top of the Stack, return “No”.

Below is the implementation of this approach: 

C++




// CPP Program to check if a queue of first
// n natural number can be sorted using a stack
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if given queue element
// can be sorted into another queue using a
// stack.
bool checkSorted(int n, queue<int>& q)
{
    stack<int> st;
    int expected = 1;
    int fnt;
 
    // while given Queue is not empty.
    while (!q.empty()) {
        fnt = q.front();
        q.pop();
 
        // if front element is the expected element
        if (fnt == expected)
            expected++;
 
        else {
            // if stack is empty, push the element
            if (st.empty()) {
                st.push(fnt);
            }
 
            // if top element is less than element which
            // need to be pushed, then return false.
            else if (!st.empty() && st.top() < fnt) {
                return false;
            }
 
            // else push into the stack.
            else
                st.push(fnt);
        }
 
        // while expected element are coming from
        // stack, pop them out.
        while (!st.empty() && st.top() == expected) {
            st.pop();
            expected++;
        }
    }
 
    // if the final expected element value is equal
    // to initial Queue size and the stack is empty.
    if (expected - 1 == n && st.empty())
        return true;
 
    return false;
}
 
// Driven Program
int main()
{
    queue<int> q;
    q.push(5);
    q.push(1);
    q.push(2);
    q.push(3);
    q.push(4);
 
    int n = q.size();
 
    (checkSorted(n, q) ? (cout << "Yes") :
                         (cout << "No"));
 
    return 0;
}


Java




// Java Program to check if a queue
// of first n natural number can
// be sorted using a stack
import java.io.*;
import java.util.*;
 
class GFG
{
    static Queue<Integer> q =
                    new LinkedList<Integer>();
     
    // Function to check if given
    // queue element can be sorted
    // into another queue using a stack.
    static boolean checkSorted(int n)
    {
        Stack<Integer> st =
                    new Stack<Integer>();
        int expected = 1;
        int fnt;
     
        // while given Queue
        // is not empty.
        while (q.size() != 0)
        {
            fnt = q.peek();
            q.poll();
     
            // if front element is
            // the expected element
            if (fnt == expected)
                expected++;
     
            else
            {
                // if stack is empty,
                // push the element
                if (st.size() == 0)
                {
                    st.push(fnt);
                }
     
                // if top element is less than
                // element which need to be
                // pushed, then return false.
                else if (st.size() != 0 &&
                         st.peek() < fnt)
                {
                    return false;
                }
     
                // else push into the stack.
                else
                    st.push(fnt);
            }
     
            // while expected element are
            // coming from stack, pop them out.
            while (st.size() != 0 &&
                   st.peek() == expected)
            {
                st.pop();
                expected++;
            }
        }
         
        // if the final expected element
        // value is equal to initial Queue
        // size and the stack is empty.
        if (expected - 1 == n &&
                st.size() == 0)
            return true;
     
        return false;
    }
     
    // Driver Code
    public static void main(String args[])
    {
        q.add(5);
        q.add(1);
        q.add(2);
        q.add(3);
        q.add(4);
     
        int n = q.size();
 
        if (checkSorted(n))
            System.out.print("Yes");
        else
            System.out.print("No");
    }
}
 
// This code is contributed by
// Manish Shaw(manishshaw1)


Python3




# Python Program to check if a queue of first
# n natural number can be sorted using a stack
from queue import Queue
 
# Function to check if given queue element
# can be sorted into another queue using a
# stack.
def checkSorted(n, q):
    st = []
    expected = 1
    fnt = None
 
    # while given Queue is not empty.
    while (not q.empty()):
        fnt = q.queue[0]
        q.get()
 
        # if front element is the
        # expected element
        if (fnt == expected):
            expected += 1
 
        else:
             
            # if stack is empty, put the element
            if (len(st) == 0):
                st.append(fnt)
 
            # if top element is less than element which
            # need to be puted, then return false.
            elif (len(st) != 0 and st[-1] < fnt):
                return False
 
            # else put into the stack.
            else:
                st.append(fnt)
 
        # while expected element are coming
        # from stack, pop them out.
        while (len(st) != 0 and
                   st[-1] == expected):
            st.pop()
            expected += 1
 
    # if the final expected element value is equal
    # to initial Queue size and the stack is empty.
    if (expected - 1 == n and len(st) == 0):
        return True
 
    return False
 
# Driver Code
if __name__ == '__main__':
    q = Queue()
    q.put(5)
    q.put(1)
    q.put(2)
    q.put(3)
    q.put(4)
 
    n = q.qsize()
 
    if checkSorted(n, q):
        print("Yes")
    else:
        print("No")
 
# This code is contributed by PranchalK


C#




// C# Program to check if a queue
// of first n natural number can
// be sorted using a stack
using System;
using System.Linq;
using System.Collections.Generic;
 
class GFG
{
    // Function to check if given
    // queue element can be sorted
    // into another queue using a stack.
    static bool checkSorted(int n,
                            ref Queue<int> q)
    {
        Stack<int> st = new Stack<int>();
        int expected = 1;
        int fnt;
     
        // while given Queue
        // is not empty.
        while (q.Count != 0)
        {
            fnt = q.Peek();
            q.Dequeue();
     
            // if front element is
            // the expected element
            if (fnt == expected)
                expected++;
     
            else
            {
                // if stack is empty,
                // push the element
                if (st.Count == 0)
                {
                    st.Push(fnt);
                }
     
                // if top element is less than
                // element which need to be
                // pushed, then return false.
                else if (st.Count != 0 &&
                         st.Peek() < fnt)
                {
                    return false;
                }
     
                // else push into the stack.
                else
                    st.Push(fnt);
            }
     
            // while expected element are
            // coming from stack, pop them out.
            while (st.Count != 0 &&
                   st.Peek() == expected)
            {
                st.Pop();
                expected++;
            }
        }
        // if the final expected element
        // value is equal to initial Queue
        // size and the stack is empty.
        if (expected - 1 == n &&
                st.Count == 0)
            return true;
     
        return false;
    }
     
    // Driver Code
    static void Main()
    {
        Queue<int> q = new Queue<int>();
        q.Enqueue(5);
        q.Enqueue(1);
        q.Enqueue(2);
        q.Enqueue(3);
        q.Enqueue(4);
     
        int n = q.Count;
 
        if (checkSorted(n, ref q))
            Console.Write("Yes");
        else
            Console.Write("No");
    }
}
 
// This code is contributed by
// Manish Shaw(manishshaw1)


Javascript




<script>
    // Javascript Program to check if a queue
    // of first n natural number can
    // be sorted using a stack
     
    let q = [];
      
    // Function to check if given
    // queue element can be sorted
    // into another queue using a stack.
    function checkSorted(n)
    {
        let st = [];
        let expected = 1;
        let fnt;
      
        // while given Queue
        // is not empty.
        while (q.length != 0)
        {
            fnt = q[0];
            q.shift();
      
            // if front element is
            // the expected element
            if (fnt == expected)
                expected++;
      
            else
            {
                // if stack is empty,
                // push the element
                if (st.length == 0)
                {
                    st.push(fnt);
                }
      
                // if top element is less than
                // element which need to be
                // pushed, then return false.
                else if (st.length != 0 &&
                         st[st.length - 1] < fnt)
                {
                    return false;
                }
      
                // else push into the stack.
                else
                    st.push(fnt);
            }
      
            // while expected element are
            // coming from stack, pop them out.
            while (st.length != 0 &&
                   st[st.length - 1] == expected)
            {
                st.pop();
                expected++;
            }
        }
          
        // if the final expected element
        // value is equal to initial Queue
        // size and the stack is empty.
        if ((expected - 1) == n && st.length == 0)
            return true;
      
        return false;
    }
     
    q.push(5);
    q.push(1);
    q.push(2);
    q.push(3);
    q.push(4);
 
    let n = q.length;
 
    if (checkSorted(n))
      document.write("Yes");
    else
      document.write("No");
    
   // This code is contributed by suresh07.
</script>


Output

Yes

Complexity Analysis:

  • Time Complexity: O(n)
  • Space Complexity: O(n)

Video Contributed by Parul Shandilya 



Previous Article
Next Article

Similar Reads

Reversing a Queue using another Queue
Given a queue. The task is to reverse the queue using another empty queue. Examples: Input: queue[] = {1, 2, 3, 4, 5} Output: 5 4 3 2 1 Input: queue[] = {10, 20, 30, 40} Output: 40 30 20 10 Approach: Given a queue and an empty queue.The last element of the queue should be the first element of the new queue.To get the last element there is a need to
5 min read
Stack and Queue in Python using queue Module
A simple python List can act as queue and stack as well. Queue mechanism is used widely and for many purposes in daily life. A queue follows FIFO rule(First In First Out) and is used in programming for sorting and for many more things. Python provides Class queue as a module which has to be generally created in languages such as C/C++ and Java. 1.
3 min read
Should we declare as Queue or Priority Queue while using Priority Queue in Java?
Queue: Queue is an Interface that extends the collection Interface in Java and this interface belongs to java.util package. A queue is a type of data structure that follows the FIFO (first-in-first-out ) order. The queue contains ordered elements where insertion and deletion of elements are done at different ends. Priority Queue and Linked List are
3 min read
Check if a given value can be reached from another value in a Circular Queue by K-length jumps
Given integers N, K, A, and B, check if it is possible to reach B from A in a circular queue of integers from 1 to N placed sequentially, by jumps of K length. In each move, If it is possible, then print "Yes". Otherwise, print "No". Examples: Input: N = 5, A = 2, B = 1, K = 2Output: YesExplanation: 2 -&gt; 4 -&gt; 1. Therefore, it is possible to r
9 min read
Check if an array can be sorted by swapping pairs from indices consisting of unequal elements in another array
Given an array A[] of size N and a binary array B[] of size N, the task is to check if the array A[] can be converted into a sorted array by swapping pairs (A[i], A[j]) if B[i] is not equal to B[j]. If the array A[] can be sorted, then print "Yes". Otherwise, print "No". Examples: Input: A[] = {3, 1, 2}, B[] = {0, 1, 1}Output: YesExplanation:Swap e
15 min read
Reversing a Stack with the help of another empty Stack
Given a Stack consisting of N elements, the task is to reverse the Stack using an extra stack. Examples: Input: stack = {1, 2, 3, 4, 5} Output: 1 2 3 4 5 Explanation: Input Stack: 5 4 3 2 1 Reversed Stack: 1 2 3 4 5 Input: stack = {1, 3, 5, 4, 2} Output: 1 3 5 4 2 Approach 1: Follow the steps below to solve the problem: Initialize an empty stack.Po
8 min read
Check if two sorted arrays can be merged to form a sorted array with no adjacent pair from the same array
Given two sorted arrays A[] and B[] of size N, the task is to check if it is possible to merge two given sorted arrays into a new sorted array such that no two consecutive elements are from the same array. Examples: Input: A[] = {3, 5, 8}, B[] = {2, 4, 6}Output: Yes Explanation: Merged array = {B[0], A[0], B[1], A[1], B[2], A[2]} Since the resultan
15+ min read
Check whether an array can be fit into another array rearranging the elements in the array
Given two arrays A and B of the same size N. Check whether array A can be fit into array B. An array is said to fit into another array if by arranging the elements of both arrays, there exists a solution such that the ith element of the first array is less than or equal to ith element of the second array. Examples: Input : A[] = { 7, 5, 3, 2 }, B[]
6 min read
Minimum length of a rod that can be split into N equal parts that can further be split into given number of equal parts
Given an array arr[] consisting of N positive integers, the task is to find the minimum possible length of a rod that can be cut into N equal parts such that every ith part can be cut into arr[i] equal parts. Examples: Input: arr[] = {1, 2}Output: 4Explanation:Consider the length of the rod as 4. Then it can be divided in 2 equal parts, each having
7 min read
Check if array can be divided into two subsequences merging whom makes Array sorted
Given an integer array A[] of size N, the task is to check if the array can be divided into two subsequences such that appending one of them at the end of the other makes the array sorted. A sub-sequence is a sequence that can be obtained from the array by deleting some or no elements from it. It may or may not be a continuous part of an array. Exa
8 min read
Article Tags :
Practice Tags :