Open In App

How to efficiently implement k Queues in a single array?

Last Updated : 02 May, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

Introduction :

One efficient way to implement k queues in a single array is to use a technique called “circular array implementation of k queues.” This approach uses a single array to store elements for all k queues, and it divides the array into k segments, one for each queue.

To implement this approach, we need to keep track of two pointers for each queue: a front pointer and a rear pointer. These pointers will indicate the start and end of the segment in the array for each queue. We also need to keep track of the size of each segment to know how many elements are currently in each queue.

To enqueue an element into a particular queue, we need to check if there is any space left in the segment for that queue. If there is space, we can add the element to the end of the segment and update the rear pointer for that queue. If there is no space, we need to return an error or resize the segment (if possible).

To dequeue an element from a particular queue, we need to check if there are any elements in that queue. If there are elements, we can remove the first element in the segment and update the front pointer for that queue. If there are no elements, we need to return an error.

To implement this approach efficiently, we can use a circular array to avoid wasting space. This means that if we reach the end of a segment, we wrap around to the beginning of the segment, effectively treating the array as a circle

We have discussed efficient implementation of k stack in an array. In this post, same for queue is discussed. Following is the detailed problem statement.

Create a data structure kQueues that represents k queues. Implementation of kQueues should use only one array, i.e., k queues should use the same array for storing elements. Following functions must be supported by kQueues.

  • enqueue(int x, int qn) –> adds x to queue number ‘qn’ where qn is from 0 to k-1 
  • dequeue(int qn) –> deletes an element from queue number ‘qn’ where qn is from 0 to k-1 

Method 1 (Divide the array in slots of size n/k):

A simple way to implement k queues is to divide the array in k slots of size n/k each, and fix the slots for different queues, i.e., use arr[0] to arr[n/k-1] for the first queue, and arr[n/k] to arr[2n/k-1] for queue2 where arr[] is the array to be used to implement two queues and size of array be n.

The problem with this method is an inefficient use of array space. An enqueue operation may result in overflow even if there is space available in arr[]. For example, consider k as 2 and array size n as 6. Let we enqueue 3 elements to first and do not enqueue anything to the second queue. When we enqueue the 4th element to the first queue, there will be overflow even if we have space for 3 more elements in the array.

Method 2 (A space efficient implementation):

The idea is similar to the stack post, here we need to use three extra arrays. In stack post, we needed two extra arrays, one more array is required because in queues, enqueue() and dequeue() operations are done at different ends.

Following are the three extra arrays are used: 

  1. front[]: This is of size k and stores indexes of front elements in all queues. 
  2. rear[]: This is of size k and stores indexes of rear elements in all queues. 
  3. next[]: This is of size n and stores indexes of next item for all items in array arr[]. 

Here arr[] is the actual array that stores k stacks.

Together with k queues, a stack of free slots in arr[] is also maintained. The top of this stack is stored in a variable ‘free’.

All entries in front[] are initialized as -1 to indicate that all queues are empty. All entries next[i] are initialized as i+1 because all slots are free initially and pointing to the next slot. Top of the free stack, ‘free’ is initialized as 0.

Following is implementation of the above idea. 

C++




// A C++ program to demonstrate implementation
// of k queues in a single
// array in time and space efficient way
#include<iostream>
#include<climits>
using namespace std;
 
// A C++ class to represent k queues
// in a single array of size n
class kQueues
{  
    // Array of size n to store actual
    // content to be stored in queue
    int *arr;
 
    // Array of size k to store indexes
    // of front elements of the queue 
    int *front;  
 
    // Array of size k to store indexes
    // of rear elements of queue
    int *rear;
 
    // Array of size n to store next
    // entry in all queues           
    int *next; 
    int n, k;
 
    int free; // To store the beginning index of the free list
 
public:
    //constructor to create k queue
    // in an array of size n
    kQueues(int k, int n);
 
    // A utility function to check if
    // there is space available
    bool isFull()   {  return (free == -1);  }
 
    // To enqueue an item in queue number
    // 'qn' where qn is from 0 to k-1
    void enqueue(int item, int qn);
 
    // To dequeue an from queue number
    // 'qn' where qn is from 0 to k-1
    int dequeue(int qn);
 
    // To check whether queue number
    // 'qn' is empty or not
    bool isEmpty(int qn)  {  return (front[qn] == -1); }
};
 
// Constructor to create k queues
// in an array of size n
kQueues::kQueues(int k1, int n1)
{
    // Initialize n and k, and allocate
    // memory for all arrays
    k = k1, n = n1;
    arr = new int[n];
    front = new int[k];
    rear = new int[k];
    next = new int[n];
 
    // Initialize all queues as empty
    for (int i = 0; i < k; i++)
        front[i] = -1;
 
    // Initialize all spaces as free
    free = 0;
    for (int i=0; i<n-1; i++)
        next[i] = i+1;
    next[n-1] = -1;  // -1 is used to indicate end of free list
}
 
// To enqueue an item in queue number
// 'qn' where qn is from 0 to k-1
void kQueues::enqueue(int item, int qn)
{
    // Overflow check
    if (isFull())
    {
        cout << "\nQueue Overflow\n";
        return;
    }
 
    int i = free;      // Store index of first free slot
 
    // Update index of free slot to index of next slot in free list
    free = next[i];
 
    if (isEmpty(qn))
        front[qn] = i;
    else
        next[rear[qn]] = i;
 
    next[i] = -1;
 
    // Update next of rear and then rear for queue number 'qn'
    rear[qn] = i;
 
    // Put the item in array
    arr[i] = item;
}
 
// To dequeue an from queue number 'qn' where qn is from 0 to k-1
int kQueues::dequeue(int qn)
{
    // Underflow checkSAS
    if (isEmpty(qn))
    {
         cout << "\nQueue Underflow\n";
         return INT_MAX;
    }
 
    // Find index of front item in queue number 'qn'
    int i = front[qn];
   
    // Change top to store next of previous top
    front[qn] = next[i];
 
    // Attach the previous front to the
    // beginning of free list
    next[i] = free;
    free = i;
 
    // Return the previous front item
    return arr[i];
}
 
/* Driver program to test kStacks class */
int main()
{
    // Let us create 3 queue in an array of size 10
    int k = 3, n = 10;
    kQueues ks(k, n);
 
    // Let us put some items in queue number 2
    ks.enqueue(15, 2);
    ks.enqueue(45, 2);
 
    // Let us put some items in queue number 1
    ks.enqueue(17, 1);
    ks.enqueue(49, 1);
    ks.enqueue(39, 1);
 
    // Let us put some items in queue number 0
    ks.enqueue(11, 0);
    ks.enqueue(9, 0);
    ks.enqueue(7, 0);
 
    cout << "Dequeued element from queue 2 is " << ks.dequeue(2) << endl;
    cout << "Dequeued element from queue 1 is " << ks.dequeue(1) << endl;
    cout << "Dequeued element from queue 0 is " << ks.dequeue(0) << endl;
 
    return 0;
}


Java




// A Java program to demonstrate implementation of k queues in a single
// array in time and space efficient way
public class KQueues {
 
    int k;
    int n;
    int[] arr;
    int[] front;
    int[] rear;
    int[] next;
    int free;
     
    KQueues(int k, int n){
         
        // Initialize n and k, and allocate memory for all arrays
        this.k = k;
        this.n = n;
        this.arr = new int[n];
        this.front = new int[k];
        this.rear = new int[k];
        this.next = new int[n];
         
        // Initialize all queues as empty
        for(int i= 0; i< k; i++) {
            front[i] = rear[i] = -1;
        }
         
        // Initialize all spaces as free
        free = 0;
        for(int i= 0; i< n-1; i++) {
            next[i] = i+1;
        }
        next[n-1] = -1;
         
         
    }
     
    public static void main(String[] args)
    {
        // Let us create 3 queue in an array of size 10
        int k = 3, n = 10;
        KQueues ks=  new KQueues(k, n);
        
         
        // Let us put some items in queue number 2
        ks.enqueue(15, 2);
        ks.enqueue(45, 2);
       
        // Let us put some items in queue number 1
        ks.enqueue(17, 1);
        ks.enqueue(49, 1);
        ks.enqueue(39, 1);
       
        // Let us put some items in queue number 0
        ks.enqueue(11, 0);
        ks.enqueue(9, 0);
        ks.enqueue(7, 0);
         
        System.out.println("Dequeued element from queue 2 is " +
                                ks.dequeue(2));
        System.out.println("Dequeued element from queue 1 is " +
                                ks.dequeue(1));
        System.out.println("Dequeued element from queue 0 is " +
                                ks.dequeue(0) );
       
    }
     
    // To check whether queue number 'i' is empty or not
    private boolean isEmpty(int i) {
        return front[i] == -1;
    }
     
    // To dequeue an from queue number 'i' where i is from 0 to k-1
    private boolean isFull(int i) {
        return free == -1;
    }
 
    // To enqueue an item in queue number 'j' where j is from 0 to k-1
    private void enqueue(int item, int j) {
        if(isFull(j)) {
            System.out.println("queue overflow");
            return;
        }
         
        int nextFree = next[free];
         
        if(isEmpty(j)) {
            rear[j] = front[j] = free;
        }else {
            // Update next of rear and then rear for queue number 'j'
            next[rear[j]] = free;
            rear[j] = free;
        }
        next[free] = -1;
         
        // Put the item in array
        arr[free] = item;
         
        // Update index of free slot to index of next slot in free list
        free = nextFree;
    }
     
    // To dequeue an from queue number 'i' where i is from 0 to k-1
    private int dequeue(int i) {
        // Underflow checkSAS
        if(isEmpty(i)) {
            System.out.println("Stack underflow");
            return Integer.MIN_VALUE;
        }
         
        // Find index of front item in queue number 'i'
        int frontIndex = front[i];
 
        // Change top to store next of previous top
        front[i] = next[frontIndex];
         
        // Attach the previous front to the beginning of free list
        next[frontIndex] = free;
        free = frontIndex;
         
        return arr[frontIndex];
    }
     
}


Python3




# A Python program to demonstrate implementation of k queues in a single
# array in time and space efficient way
 
class KQueues:
    def __init__(self, number_of_queues, array_length):
        self.number_of_queues = number_of_queues
        self.array_length = array_length
        self.array = [-1] * array_length
        self.front = [-1] * number_of_queues
        self.rear = [-1] * number_of_queues
        self.next_array = list(range(1, array_length))
        self.next_array.append(-1)
        self.free = 0
 
    # To check whether the current queue_number is empty or not
    def is_empty(self, queue_number):
        return True if self.front[queue_number] == -1 else False
 
    # To check whether the current queue_number is full or not
    def is_full(self, queue_number):
        return True if self.free == -1 else False
 
    # To enqueue the given item in the given queue_number where
    # queue_number is from 0 to number_of_queues-1
    def enqueue(self, item, queue_number):
        if self.is_full(queue_number):
            print("Queue FULL")
            return
        next_free = self.next_array[self.free]
        if self.is_empty(queue_number):
            self.front[queue_number] = self.rear[queue_number] = self.free
        else:
            self.next_array[self.rear[queue_number]] = self.free
            self.rear[queue_number] = self.free
        self.next_array[self.free] = -1
        self.array[self.free] = item
        self.free = next_free
 
    # To dequeue an item from the given queue_number where
    # queue_number is from 0 to number_of_queues-1
    def dequeue(self, queue_number):
        if self.is_empty(queue_number):
             print("Queue EMPTY")
             return
 
        front_index = self.front[queue_number]
        self.front[queue_number] = self.next_array[front_index]
        self.next_array[front_index] = self.free
        self.free = front_index
        return self.array[front_index]
         
if __name__ == "__main__":
    # Let us create 3 queue in an array of size 10 
    ks =  KQueues(3, 10)
           
    # Let us put some items in queue number 2 
    ks.enqueue(15, 2)
    ks.enqueue(45, 2)
  
    # Let us put some items in queue number 1 
    ks.enqueue(17, 1); 
    ks.enqueue(49, 1); 
    ks.enqueue(39, 1); 
         
    # Let us put some items in queue number 0 
    ks.enqueue(11, 0); 
    ks.enqueue(9, 0); 
    ks.enqueue(7, 0); 
           
    print("Dequeued element from queue 2 is {}".format(ks.dequeue(2)))
    print("Dequeued element from queue 1 is {}".format(ks.dequeue(1)))
    print("Dequeued element from queue 0 is {}".format(ks.dequeue(0)))


C#




// A C# program to demonstrate implementation of k queues in a single
// array in time and space efficient way
using System;
public class KQueues
{
  int k;
  int n;
  int[] arr;
  int[] front;
  int[] rear;
  int[] next;
  int free;  
  KQueues(int k, int n)
  {
 
    // Initialize n and k, and
    // allocate memory for all arrays
    this.k = k;
    this.n = n;
    this.arr = new int[n];
    this.front = new int[k];
    this.rear = new int[k];
    this.next = new int[n];
 
    // Initialize all queues as empty
    for(int i = 0; i < k; i++)
    {
      front[i] = rear[i] = -1;
    }
 
    // Initialize all spaces as free
    free = 0;
    for(int i = 0; i < n - 1; i++)
    {
      next[i] = i + 1;
    }
    next[n - 1] = -1;       
  }
 
  public static void Main(String[] args)
  {
 
    // Let us create 3 queue in an array of size 10
    int k = 3, n = 10;
    KQueues ks = new KQueues(k, n);
 
    // Let us put some items in queue number 2
    ks.enqueue(15, 2);
    ks.enqueue(45, 2);
 
    // Let us put some items in queue number 1
    ks.enqueue(17, 1);
    ks.enqueue(49, 1);
    ks.enqueue(39, 1);
 
    // Let us put some items in queue number 0
    ks.enqueue(11, 0);
    ks.enqueue(9, 0);
    ks.enqueue(7, 0);
 
    Console.WriteLine("Dequeued element from queue 2 is " +
                      ks.dequeue(2));
    Console.WriteLine("Dequeued element from queue 1 is " +
                      ks.dequeue(1));
    Console.WriteLine("Dequeued element from queue 0 is " +
                      ks.dequeue(0) );
 
  }
 
  // To check whether queue number 'i' is empty or not
  private bool isEmpty(int i)
  {
    return front[i] == -1;
  }
 
  // To dequeue an from queue
  // number 'i' where i is from 0 to k-1
  private bool isFull(int i)
  {
    return free == -1;
  }
 
  // To enqueue an item in queue
  // number 'j' where j is from 0 to k-1
  private void enqueue(int item, int j)
  {
    if(isFull(j))
    {
      Console.WriteLine("queue overflow");
      return;
    }
 
    int nextFree = next[free];
 
    if(isEmpty(j))
    {
      rear[j] = front[j] = free;
    }
    else
    {
      // Update next of rear and then
      // rear for queue number 'j'
      next[rear[j]] = free;
      rear[j] = free;
    }
    next[free] = -1;
 
    // Put the item in array
    arr[free] = item;
 
    // Update index of free slot to
    // index of next slot in free list
    free = nextFree;
  }
 
  // To dequeue an from queue
  // number 'i' where i is from 0 to k-1
  private int dequeue(int i)
  {
 
    // Underflow checkSAS
    if(isEmpty(i))
    {
      Console.WriteLine("Stack underflow");
      return int.MinValue;
    }
 
    // Find index of front item in queue number 'i'
    int frontIndex = front[i];
 
    // Change top to store next of previous top
    front[i] = next[frontIndex];
 
    // Attach the previous front to the beginning of free list
    next[frontIndex] = free;
    free = frontIndex;       
    return arr[frontIndex];
  }   
}
 
// This code is contributed by aashish1995


Javascript




<script>
 
// A Javascript program to demonstrate implementation of k queues in a single
// array in time and space efficient way
class KQueues
{
    constructor(k,n)
    {
        // Initialize n and k, and allocate memory for all arrays
        this.k = k;
        this.n = n;
        this.arr = new Array(n);
        this.front = new Array(k);
        this.rear = new Array(k);
        this.next = new Array(n);
          
        // Initialize all queues as empty
        for(let i= 0; i< k; i++) {
            this.front[i] = this.rear[i] = -1;
        }
          
        // Initialize all spaces as free
        this.free = 0;
        for(let i= 0; i< n-1; i++) {
            this.next[i] = i+1;
        }
        this.next[n-1] = -1;
    }
     
    // To check whether queue number 'i' is empty or not
    isEmpty(i)
    {
        return this.front[i] == -1;
    }
     
    // To dequeue an from queue number 'i' where i is from 0 to k-1
    isFull(i)
    {
        return this.free == -1;
    }
     
    // To enqueue an item in queue number 'j' where j is from 0 to k-1
    enqueue(item,j)
    {
        if(this.isFull(j)) {
            document.write("queue overflow<br>");
            return;
        }
          
        let nextFree = this.next[this.free];
          
        if(this.isEmpty(j)) {
            this.rear[j] = this.front[j] = this.free;
        }else {
            // Update next of rear and then rear for queue number 'j'
            this.next[this.rear[j]] = this.free;
            this.rear[j] = this.free;
        }
        this.next[this.free] = -1;
          
        // Put the item in array
        this.arr[this.free] = item;
          
        // Update index of free slot to index of next slot in free list
        this.free = nextFree;
    }
     
    // To dequeue an from queue number 'i' where i is from 0 to k-1
    dequeue(i)
    {
        // Underflow checkSAS
        if(this.isEmpty(i)) {
            document.write("Stack underflow<br>");
            return Number.MIN_VALUE;
        }
          
        // Find index of front item in queue number 'i'
        let frontIndex = this.front[i];
  
        // Change top to store next of previous top
        this.front[i] = this.next[frontIndex];
          
        // Attach the previous front to the beginning of free list
        this.next[frontIndex] = this.free;
        this.free = frontIndex;
          
        return this.arr[frontIndex];
    }
}
 
// Let us create 3 queue in an array of size 10
        let k = 3, n = 10;
        let ks=  new KQueues(k, n);
         
          
        // Let us put some items in queue number 2
        ks.enqueue(15, 2);
        ks.enqueue(45, 2);
        
        // Let us put some items in queue number 1
        ks.enqueue(17, 1);
        ks.enqueue(49, 1);
        ks.enqueue(39, 1);
        
        // Let us put some items in queue number 0
        ks.enqueue(11, 0);
        ks.enqueue(9, 0);
        ks.enqueue(7, 0);
          
        document.write("Dequeued element from queue 2 is " +
                                ks.dequeue(2)+"<br>");
        document.write("Dequeued element from queue 1 is " +
                                ks.dequeue(1)+"<br>");
        document.write("Dequeued element from queue 0 is " +
                                ks.dequeue(0)+"<br>" );
 
 
// This code is contributed by avanitrachhadiya2155
</script>


Output

Dequeued element from queue 2 is 15
Dequeued element from queue 1 is 17
Dequeued element from queue 0 is 11

Time complexities of enqueue() and dequeue() is O(1).

The best part of the above implementation is, if there is a slot available in the queue, then an item can be enqueued in any of the queues, i.e., no wastage of space. This method requires some extra space. Space may not be an issue because queue items are typically large, for example, queues of employees, students, etc where every item is of hundreds of bytes. For such large queues, the extra space used is comparatively very less as we use three integer arrays as extra space.

Issuses in efficiently implement k Queues in a single array :

While the circular array implementation of k queues is an efficient way to implement multiple queues in a single array, there are several issues that need to be considered to ensure that the implementation is correct and efficient.

  1. Size allocation: One issue is deciding how to allocate the size of each queue segment in the array. If the size of one queue segment is too small, that queue may fill up quickly, causing a lot of unnecessary resizing and memory allocation. On the other hand, if the size of one queue segment is too large, there may be a lot of wasted space in the array.
  2. Overflow/underflow: Another issue is handling overflow and underflow. If the array becomes full, there will be no space to enqueue elements, and if the array becomes empty, there will be no elements left to dequeue. It is important to handle these cases properly to avoid errors or unexpected behavior.
  3. Tracking size: To properly implement the k queues in a single array, we need to keep track of the size of each queue segment to know how many elements are currently in each queue. This can add overhead to the implementation, as we need to update the size of each segment whenever we enqueue or dequeue an element.
  4. Implementation complexity: Finally, the circular array implementation of k queues can be more complex to implement and maintain than a simpler implementation using separate arrays for each queue. This is because we need to keep track of multiple pointers and manage the circular nature of the array.

Examples of Queues in a single array :

  1. Multi-Threaded Programming: In multi-threaded programming, where multiple threads need to access shared resources in a concurrent manner, a circular array implementation of k queues can be used to implement a thread-safe data structure. Each thread can access a particular queue, and the queues can be managed in a thread-safe manner.
  2. Resource Management: In a resource management system, such as a job scheduler or task manager, queues can be used to manage resources efficiently. Using a single array to implement multiple queues allows efficient management of multiple resources.
  3. Web Servers: In web servers, queues can be used to manage incoming requests from clients. A single array implementation of multiple queues can be used to manage multiple request queues, such as HTTP and FTP requests, in a single data structure.
  4. Operating Systems: In operating systems, queues can be used to manage system resources such as CPU time and memory. A circular array implementation of multiple queues can be used to manage multiple queues of processes or threads, allowing efficient resource management.
  5. Data Structures: Queues are a fundamental data structure used in many algorithms and software applications. A circular array implementation of multiple queues can be used to implement queue-based algorithms such as breadth-first search, shortest path algorithms, and simulation algorithms.


Previous Article
Next Article

Similar Reads

Array-Based Queues vs List-Based Queues
Queues:A queue is a linear data structure in which elements are inserted from one end called the rear end and deleted from another end called the front end. It follows FIFO (First In First Out) technique.Insertion in the queue is called enqueue and deletion in the queue is called dequeue.Queues can be implemented in two ways: Array-based queues and
3 min read
How to efficiently implement k stacks in a single array?
We have discussed space-efficient implementation of 2 stacks in a single array. In this post, a general solution for k stacks is discussed. Following is the detailed problem statement. Create a data structure kStacks that represents k stacks. Implementation of kStacks should use only one array, i.e., k stacks should use the same array for storing e
15+ min read
Implement Stack using Queues
Given a Queue data structure that supports standard operations like enqueue() and dequeue(). The task is to implement a Stack data structure using only instances of Queue and Queue operations allowed on the instances.   Recommended PracticeStack using two queuesTry It!A Stack can be implemented using two queues. Let Stack to be implemented be 's' a
15+ min read
Different Types of Queues and its Applications
Introduction : A Queue is a linear structure that follows a particular order in which the operations are performed. The order is First In First Out (FIFO). A good example of a queue is any queue of consumers for a resource where the consumer that came first is served first. In this article, the different types of queues are discussed. Types of Queu
8 min read
Introduction to Monotonic Queues
A monotonic queue is a data structure that supports efficient insertion, deletion, and retrieval of elements in a specific order, typically in increasing or decreasing order. The monotonic queue can be implemented using different data structures, such as a linked list, stack, or deque. The most common implementation is using a deque (double-ended q
8 min read
Level order traversal line by line | Set 2 (Using Two Queues)
Given a Binary Tree, print the nodes level wise, each level on a new line. Output: 1 2 3 4 5Recommended: Please solve it on "PRACTICE" first, before moving on to the solution. We have discussed one solution in below article. Print level order traversal line by line | Set 1 In this post, a different approach using two queues is discussed. We can ins
7 min read
Enqueue in Queues in Python
A queue is a basic data structure that follows the First-In-First-Out (FIFO) principle. At the back of the queue, elements are added (enqueued), and at the front, they are removed (dequeued). In this article, we will see the methods of Enqueuing (adding elements) in Python. Enqueue: The act of adding an element to the rear (back) of the queue.Deque
2 min read
Implement a stack using single queue
We are given queue data structure, the task is to implement stack using only given queue data structure.We have discussed a solution that uses two queues. In this article, a new solution is discussed that uses only one queue. This solution assumes that we can find size of queue at any point. The idea is to keep newly inserted element always at fron
6 min read
C Program for efficiently print all prime factors of a given number
Given a number n, write an efficient function to print all prime factors of n. For example, if the input number is 12, then output should be "2 2 3". And if the input number is 315, then output should be "3 3 5 7". First Approach: Following are the steps to find all prime factors. 1) While n is divisible by 2, print 2 and divide n by 2. 2) After st
5 min read
Java Program for efficiently print all prime factors of a given number
Given a number n, write an efficient function to print all prime factors of n. For example, if the input number is 12, then output should be "2 2 3". And if the input number is 315, then output should be "3 3 5 7". Following are the steps to find all prime factors. 1) While n is divisible by 2, print 2 and divide n by 2. 2) After step 1, n must be
3 min read
Article Tags :
Practice Tags :
three90RightbarBannerImg