Open In App

Minimum time required to rotten all oranges

Last Updated : 25 Apr, 2024
Improve
Improve
Like Article
Like
Save
Share
Report

Given a matrix of dimension M * N, where each cell in the matrix can have values 0, 1 or 2 which has the following meaning:  

  • 0: Empty cell
  • 1: Cells have fresh oranges
  • 2: Cells have rotten oranges

The task is to the minimum time required so that all the oranges become rotten. A rotten orange at index (i,j ) can rot other fresh oranges which are its neighbors (up, down, left, and right). If it is impossible to rot every orange then simply return -1.

banner

Minimum time required to rotten all oranges

Examples: 

Input:  arr[][C] = { {2, 1, 0, 2, 1}, {1, 0, 1, 2, 1}, {1, 0, 0, 2, 1}};
Output: 2
Explanation: At 0th time frame:
{2, 1, 0, 2, 1}
{1, 0, 1, 2, 1}
{1, 0, 0, 2, 1}
At 1st time frame:
{2, 2, 0, 2, 2}
{2, 0, 2, 2, 2}
{1, 0, 0, 2, 2}
At 2nd time frame:
{2, 2, 0, 2, 2}
{2, 0, 2, 2, 2}
{2, 0, 0, 2, 2}

Input:  arr[][C] = { {2, 1, 0, 2, 1}, {0, 0, 1, 2, 1}, {1, 0, 0, 2, 1}}
Output: -1
Explanation: At 0th time frame:
{2, 1, 0, 2, 1}
{0, 0, 1, 2, 1}
{1, 0, 0, 2, 1}
At 1st time frame:
{2, 2, 0, 2, 2}
{0, 0, 2, 2, 2}
{1, 0, 0, 2, 2}
At 2nd time frame:
{2, 2, 0, 2, 2}
{0, 0, 2, 2, 2}
{1, 0, 0, 2, 2}
The 1 at the bottom left corner of the matrix is never rotten.

Recommended Practice

Naive Approach:  

Traverse through all oranges in multiple rounds. In every round, rot the oranges to the adjacent position of oranges that were rotten in the last round.

Follow the steps below to solve the problem:

  • Create a variable no = 2 and changed = false.
  • Run a loop until there is no cell of the matrix which is changed in an iteration.
  • Run a nested loop and traverse the matrix: 
    • If the element of the matrix is equal to no then assign the adjacent elements to no + 1 if the adjacent element’s value is equal to 1, i.e. not rotten, and update changed to true.
  • Traverse the matrix and check if there is any cell that is 1. 
    • If 1 is present return -1
  • Else return no – 2.

Below is the implementation of the above approach.

C++
// C++ program to rot all oranges when you can move
// in all the four direction from a rotten orange
#include <bits/stdc++.h>
using namespace std;

const int R = 3;
const int C = 5;

// Check if i, j is under the array limits of row and column
bool issafe(int i, int j)
{
    if (i >= 0 && i < R && j >= 0 && j < C)
        return true;
    return false;
}

int rotOranges(int v[R][C])
{
    bool changed = false;
    int no = 2;
    while (true) {
        for (int i = 0; i < R; i++) {
            for (int j = 0; j < C; j++) {

                // Rot all other oranges present at
                // (i+1, j), (i, j-1), (i, j+1), (i-1, j)
                if (v[i][j] == no) {
                    if (issafe(i + 1, j)
                        && v[i + 1][j] == 1) {
                        v[i + 1][j] = v[i][j] + 1;
                        changed = true;
                    }
                    if (issafe(i, j + 1)
                        && v[i][j + 1] == 1) {
                        v[i][j + 1] = v[i][j] + 1;
                        changed = true;
                    }
                    if (issafe(i - 1, j)
                        && v[i - 1][j] == 1) {
                        v[i - 1][j] = v[i][j] + 1;
                        changed = true;
                    }
                    if (issafe(i, j - 1)
                        && v[i][j - 1] == 1) {
                        v[i][j - 1] = v[i][j] + 1;
                        changed = true;
                    }
                }
            }
        }

        // if no rotten orange found it means all
        // oranges rottened now
        if (!changed)
            break;
        changed = false;
        no++;
    }

    for (int i = 0; i < R; i++) {
        for (int j = 0; j < C; j++) {

            // if any orange is found to be
            // not rotten then ans is not possible
            if (v[i][j] == 1)
                return -1;
        }
    }

    // Because initial value for a rotten
    // orange was 2
    return no - 2;
}

// Driver function
int main()
{

    int v[R][C] = { { 2, 1, 0, 2, 1 },
                    { 1, 0, 1, 2, 1 },
                    { 1, 0, 0, 2, 1 } };

    cout << "Max time incurred: " << rotOranges(v);

    return 0;
}
Java
// Java program to rot all oranges when you can move
// in all the four direction from a rotten orange

class GFG {

    static int R = 3;
    static int C = 5;

    // Check if i, j is under the array
    // limits of row and column
    static boolean issafe(int i, int j)
    {
        if (i >= 0 && i < R && j >= 0 && j < C)
            return true;

        return false;
    }

    static int rotOranges(int v[][])
    {
        boolean changed = false;
        int no = 2;

        while (true) {
            for (int i = 0; i < R; i++) {
                for (int j = 0; j < C; j++) {

                    // Rot all other oranges present at
                    // (i+1, j), (i, j-1), (i, j+1), (i-1,
                    // j)
                    if (v[i][j] == no) {
                        if (issafe(i + 1, j)
                            && v[i + 1][j] == 1) {
                            v[i + 1][j] = v[i][j] + 1;
                            changed = true;
                        }
                        if (issafe(i, j + 1)
                            && v[i][j + 1] == 1) {
                            v[i][j + 1] = v[i][j] + 1;
                            changed = true;
                        }
                        if (issafe(i - 1, j)
                            && v[i - 1][j] == 1) {
                            v[i - 1][j] = v[i][j] + 1;
                            changed = true;
                        }
                        if (issafe(i, j - 1)
                            && v[i][j - 1] == 1) {
                            v[i][j - 1] = v[i][j] + 1;
                            changed = true;
                        }
                    }
                }
            }

            // If no rotten orange found it means all
            // oranges rottened now
            if (!changed)
                break;

            changed = false;
            no++;
        }

        for (int i = 0; i < R; i++) {
            for (int j = 0; j < C; j++) {

                // If any orange is found to be
                // not rotten then ans is not possible
                if (v[i][j] == 1)
                    return -1;
            }
        }

        // Because initial value for a rotten
        // orange was 2
        return no - 2;
    }

    // Driver Code
    public static void main(String[] args)
    {
        int v[][] = { { 2, 1, 0, 2, 1 },
                      { 1, 0, 1, 2, 1 },
                      { 1, 0, 0, 2, 1 } };

        System.out.println("Max time incurred: "
                           + rotOranges(v));
    }
}

// This code is contributed by divyesh072019
Python3
# Python3 program to rot all
# oranges when you can move
# in all the four direction
# from a rotten orange
R = 3
C = 5

# Check if i, j is under the
# array limits of row and
# column


def issafe(i, j):

    if (i >= 0 and i < R and
            j >= 0 and j < C):
        return True
    return False


def rotOranges(v):

    changed = False
    no = 2
    while (True):
        for i in range(R):
            for j in range(C):

                # Rot all other oranges
                # present at (i+1, j),
                # (i, j-1), (i, j+1),
                # (i-1, j)
                if (v[i][j] == no):
                    if (issafe(i + 1, j) and
                            v[i + 1][j] == 1):
                        v[i + 1][j] = v[i][j] + 1
                        changed = True

                    if (issafe(i, j + 1) and
                            v[i][j + 1] == 1):
                        v[i][j + 1] = v[i][j] + 1
                        changed = True

                    if (issafe(i - 1, j) and
                            v[i - 1][j] == 1):
                        v[i - 1][j] = v[i][j] + 1
                        changed = True

                    if (issafe(i, j - 1) and
                            v[i][j - 1] == 1):
                        v[i][j - 1] = v[i][j] + 1
                        changed = True

        # if no rotten orange found
        # it means all oranges rottened
        # now
        if (not changed):
            break
        changed = False
        no += 1

    for i in range(R):
        for j in range(C):

            # if any orange is found
            # to be not rotten then
            # ans is not possible
            if (v[i][j] == 1):
                return -1

    # Because initial value
    # for a rotten orange was 2
    return no - 2


# Driver function
if __name__ == "__main__":

    v = [[2, 1, 0, 2, 1],
         [1, 0, 1, 2, 1],
         [1, 0, 0, 2, 1]]

    print("Max time incurred: ",
          rotOranges(v))

# This code is contributed by Chitranayal
C#
// C# program to rot all oranges when you can move
// in all the four direction from a rotten orange
using System;
class GFG {

    static int R = 3;
    static int C = 5;

    // Check if i, j is under the array
    // limits of row and column
    static bool issafe(int i, int j)
    {
        if (i >= 0 && i < R && j >= 0 && j < C)
            return true;
        return false;
    }

    static int rotOranges(int[, ] v)
    {
        bool changed = false;
        int no = 2;
        while (true) {
            for (int i = 0; i < R; i++) {
                for (int j = 0; j < C; j++) {

                    // Rot all other oranges present at
                    // (i+1, j), (i, j-1), (i, j+1), (i-1,
                    // j)
                    if (v[i, j] == no) {
                        if (issafe(i + 1, j)
                            && v[i + 1, j] == 1) {
                            v[i + 1, j] = v[i, j] + 1;
                            changed = true;
                        }
                        if (issafe(i, j + 1)
                            && v[i, j + 1] == 1) {
                            v[i, j + 1] = v[i, j] + 1;
                            changed = true;
                        }
                        if (issafe(i - 1, j)
                            && v[i - 1, j] == 1) {
                            v[i - 1, j] = v[i, j] + 1;
                            changed = true;
                        }
                        if (issafe(i, j - 1)
                            && v[i, j - 1] == 1) {
                            v[i, j - 1] = v[i, j] + 1;
                            changed = true;
                        }
                    }
                }
            }

            // if no rotten orange found it means all
            // oranges rottened now
            if (!changed)
                break;
            changed = false;
            no++;
        }

        for (int i = 0; i < R; i++) {
            for (int j = 0; j < C; j++) {

                // if any orange is found to be
                // not rotten then ans is not possible
                if (v[i, j] == 1)
                    return -1;
            }
        }

        // Because initial value for a rotten
        // orange was 2
        return no - 2;
    }

    static void Main()
    {

        int[, ] v = { { 2, 1, 0, 2, 1 },
                      { 1, 0, 1, 2, 1 },
                      { 1, 0, 0, 2, 1 } };

        Console.Write("Max time incurred: "
                      + rotOranges(v));
    }
}

// This code is contributed by divyeshrabadiya07
Javascript
<script>
    // Javascript program to rot all oranges when you can move
    // in all the four direction from a rotten orange
    let R = 3;
    let C = 5;

    // Check if i, j is under the array limits of row and column
    function issafe(i, j)
    {
        if (i >= 0 && i < R && j >= 0 && j < C)
            return true;
        return false;
    }

    function rotOranges(v)
    {
        let changed = false;
        let no = 2;
        while (true) {
            for (let i = 0; i < R; i++) {
                for (let j = 0; j < C; j++) {

                    // Rot all other oranges present at
                    // (i+1, j), (i, j-1), (i, j+1), (i-1, j)
                    if (v[i][j] == no) {
                        if (issafe(i + 1, j) && v[i + 1][j] == 1) {
                            v[i + 1][j] = v[i][j] + 1;
                            changed = true;
                        }
                        if (issafe(i, j + 1) && v[i][j + 1] == 1) {
                            v[i][j + 1] = v[i][j] + 1;
                            changed = true;
                        }
                        if (issafe(i - 1, j) && v[i - 1][j] == 1) {
                            v[i - 1][j] = v[i][j] + 1;
                            changed = true;
                        }
                        if (issafe(i, j - 1) && v[i][j - 1] == 1) {
                            v[i][j - 1] = v[i][j] + 1;
                            changed = true;
                        }
                    }
                }
            }

            // if no rotten orange found it means all
            // oranges rottened now
            if (!changed)
                break;
            changed = false;
            no++;
        }

        for (let i = 0; i < R; i++) {
            for (let j = 0; j < C; j++) {

                // if any orange is found to be
                // not rotten then ans is not possible
                if (v[i][j] == 1)
                    return -1;
            }
        }

        // Because initial value for a rotten
        // orange was 2
        return no - 2;
    }

// Driver code
    let v = [ [ 2, 1, 0, 2, 1 ],
                    [ 1, 0, 1, 2, 1 ],
                    [ 1, 0, 0, 2, 1 ] ];
 
    document.write("Max time incurred: " + rotOranges(v));
    
    // This code is contributed by mukesh07.
</script>

Output
Max time incurred: 2

Time Complexity: O((R*C) * (R *C)), 

  • The matrix needs to be traversed again and again until there is no change in the matrix, that can happen max(R *C)/2 times. 
  • So time complexity is O((R * C) * (R *C)).

Auxiliary Space: O(1), No extra space is required.

Minimum time required to rot all oranges using Breadth First Search:

The idea is to use Breadth First Search. The condition of oranges getting rotten is when they come in contact with other rotten oranges. This is similar to a breadth-first search where the graph is divided into layers or circles and the search is done from lower or closer layers to deeper or higher layers. 

In the previous approach, the idea was based on BFS but the implementation was poor and inefficient. To find the elements whose values are no the whole matrix had to be traversed. So time can be reduced by using this efficient approach of BFS.  

Follow the steps below to solve the problem:

  • Create an empty queue Q. 
  • Find all rotten oranges and enqueue them to Q. Also, enqueue a delimiter to indicate the beginning of the next time frame.
  • Run a loop While Q is not empty and do the following while the delimiter in Q is not reached
    • Dequeue an orange from the queue, and rot all adjacent oranges. 
    • While rotting the adjacent, make sure that the time frame is incremented only once. And the time frame is not incremented if there are no adjacent oranges.
    • Dequeue the old delimiter and enqueue a new delimiter. The oranges rotten in the previous time frame lie between the two delimiters.
  • Return the last time frame.

Illustration:

Step 0: At time t=0, insert all the rotten oranges into the queue, these will act as source for multisource BFS.

INITIAL-CONFIG

Minimum time required to rotten all oranges

Step 1: At time t=1, all the fresh oranges which are adjacent to rotten oranges all made rotten and inserted into the queue.

1

Minimum time required to rotten all oranges

Step 2: At time t=2, the last fresh orange is made rotten and inserted into the queue.

2

Minimum time required to rotten all oranges

Step 3: After the last fresh orange is made rotten, no new orange will be added to queue and queue will become empty. Since the last fresh orange became rotten at time t=2, minimum time required to rot all oranges will be 2.

3

Minimum time required to rotten all oranges

Below is the implementation of the above approach.

C++
// C++ program to find minimum time required to make all
// oranges rotten
#include <bits/stdc++.h>
#define R 3
#define C 5
using namespace std;

// This function finds if it is possible to rot all oranges
// or not. If possible, then it returns minimum time
// required to rot all, otherwise returns -1
int rotOranges(vector<vector<int> >& grid)
{
    int n = grid.size(); // row size
    int m = grid[0].size(); // column size

    // delrow and delcol are used to traverse in
    // up,right,bottom and left respectively.

    int delrow[] = { -1, 0, 1, 0 };
    int delcol[] = { 0, 1, 0, -1 };

    // visited matrix to keep track of the visited cell.
    int vis[n][m];

    // queue stores rowIndex,colIndex and time taken to rot
    // respectively.

    queue<pair<pair<int, int>, int> > q;

    // counter to keep track of fresh cells.
    int cntfresh = 0;

    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (grid[i][j] == 2) {
                q.push({ { i, j },
                         0 }); // already rotten hence 0
                               // time to rot.
                vis[i][j]
                    = 2; // visited cell marked as rotten.
            }
            else {
                vis[i][j] = 0; // unvisited
            }
            if (grid[i][j] == 1)
                cntfresh++; // maintaining count for fresh
                            // oranges.
        }
    }
    int cnt = 0, tm = 0;
    while (!q.empty()) {
        int row = q.front().first.first; // row index
        int col = q.front().first.second; // col index
        int t = q.front().second; // time an orange at a
                                  // cell takes to rot.
        q.pop();

        tm = max(tm, t);

        // checking for adjacent nodes in 4 directions.
        for (int i = 0; i < 4; i++) {
            int nrow = row + delrow[i];
            int ncol = col + delcol[i];

            // checking the validity of a node and also
            // vis[nrow][ncol] !=2
            if (nrow >= 0 && nrow < n && ncol >= 0
                && ncol < m && grid[nrow][ncol] == 1
                && vis[nrow][ncol] != 2) {
                vis[nrow][ncol] = 2; // adj orange is rotten
                q.push({ { nrow, ncol },
                         t + 1 }); // incrementing time for
                                   // that orange by 1
                cnt++;
            }
        }
    }

    return (cnt == cntfresh) ? tm : -1;
}

// Driver program
int main()
{
    vector<vector<int> > arr = { { 2, 1, 0, 2, 1 },
                                 { 1, 0, 1, 2, 1 },
                                 { 1, 0, 0, 2, 1 } };
    int ans = rotOranges(arr);
    if (ans == -1)
        cout << "All oranges cannot rotn";
    else
        cout << "Time required for all oranges to rot => "
             << ans << endl;
    return 0;
}

// This code is modified by Susobhan Akhuli
Java
// Java program to find minimum time required to make all
// oranges rotten

import java.util.LinkedList;
import java.util.Queue;

public class RotOrange {
    public final static int R = 3;
    public final static int C = 5;

    // structure for storing coordinates of the cell
    static class Ele {
        int x = 0;
        int y = 0;
        Ele(int x, int y)
        {
            this.x = x;
            this.y = y;
        }
    }

    // function to check whether a cell is valid / invalid
    static boolean isValid(int i, int j)
    {
        return (i >= 0 && j >= 0 && i < R && j < C);
    }

    // Function to check whether the cell is delimiter
    // which is (-1, -1)
    static boolean isDelim(Ele temp)
    {
        return (temp.x == -1 && temp.y == -1);
    }

    // Function to check whether there is still a fresh
    // orange remaining
    static boolean checkAll(int arr[][])
    {
        for (int i = 0; i < R; i++)
            for (int j = 0; j < C; j++)
                if (arr[i][j] == 1)
                    return true;
        return false;
    }

    // This function finds if it is possible to rot all
    // oranges or not. If possible, then it returns minimum
    // time required to rot all, otherwise returns -1
    static int rotOranges(int arr[][])
    {
        // Create a queue of cells
        Queue<Ele> Q = new LinkedList<>();
        Ele temp;
        int ans = 0;
        // Store all the cells having rotten orange in first
        // time frame
        for (int i = 0; i < R; i++)
            for (int j = 0; j < C; j++)
                if (arr[i][j] == 2)
                    Q.add(new Ele(i, j));

        // Separate these rotten oranges from the oranges
        // which will rotten due the oranges in first time
        // frame using delimiter which is (-1, -1)
        Q.add(new Ele(-1, -1));

        // Process the grid while there are rotten oranges
        // in the Queue
        while (!Q.isEmpty()) {
            // This flag is used to determine whether even a
            // single fresh orange gets rotten due to rotten
            // oranges in the current time frame so we can
            // increase the count of the required time.
            boolean flag = false;

            // Process all the rotten oranges in current
            // time frame.
            while (!isDelim(Q.peek())) {
                temp = Q.peek();

                // Check right adjacent cell that if it can
                // be rotten
                if (isValid(temp.x + 1, temp.y)
                    && arr[temp.x + 1][temp.y] == 1) {
                    if (!flag) {
                        // if this is the first orange to
                        // get rotten, increase count and
                        // set the flag.
                        ans++;
                        flag = true;
                    }
                    // Make the orange rotten
                    arr[temp.x + 1][temp.y] = 2;

                    // push the adjacent orange to Queue
                    temp.x++;
                    Q.add(new Ele(temp.x, temp.y));

                    // Move back to current cell
                    temp.x--;
                }

                // Check left adjacent cell that if it can
                // be rotten
                if (isValid(temp.x - 1, temp.y)
                    && arr[temp.x - 1][temp.y] == 1) {
                    if (!flag) {
                        ans++;
                        flag = true;
                    }
                    arr[temp.x - 1][temp.y] = 2;
                    temp.x--;
                    Q.add(new Ele(
                        temp.x,
                        temp.y)); // push this cell to Queue
                    temp.x++;
                }

                // Check top adjacent cell that if it can be
                // rotten
                if (isValid(temp.x, temp.y + 1)
                    && arr[temp.x][temp.y + 1] == 1) {
                    if (!flag) {
                        ans++;
                        flag = true;
                    }
                    arr[temp.x][temp.y + 1] = 2;
                    temp.y++;
                    Q.add(new Ele(
                        temp.x,
                        temp.y)); // Push this cell to Queue
                    temp.y--;
                }

                // Check bottom adjacent cell if it can be
                // rotten
                if (isValid(temp.x, temp.y - 1)
                    && arr[temp.x][temp.y - 1] == 1) {
                    if (!flag) {
                        ans++;
                        flag = true;
                    }
                    arr[temp.x][temp.y - 1] = 2;
                    temp.y--;
                    Q.add(new Ele(
                        temp.x,
                        temp.y)); // push this cell to Queue
                }
                Q.remove();
            }
            // Pop the delimiter
            Q.remove();

            // If oranges were rotten in current frame than
            // separate the rotten oranges using delimiter
            // for the next frame for processing.
            if (!Q.isEmpty()) {
                Q.add(new Ele(-1, -1));
            }

            // If Queue was empty than no rotten oranges
            // left to process so exit
        }

        // Return -1 if all arranges could not rot,
        // otherwise ans
        return (checkAll(arr)) ? -1 : ans;
    }

    // Driver program
    public static void main(String[] args)
    {
        int arr[][] = { { 2, 1, 0, 2, 1 },
                        { 1, 0, 1, 2, 1 },
                        { 1, 0, 0, 2, 1 } };
        int ans = rotOranges(arr);
        if (ans == -1)
            System.out.println("All oranges cannot rot");
        else
            System.out.println(
                "Time required for all oranges to rot => "
                + ans);
    }
}
// This code is contributed by Sumit Ghosh
Python3
# Python3 program to find minimum time required to make all
# oranges rotten
from collections import deque

# function to check whether a cell is valid / invalid


def isvalid(i, j):
    return (i >= 0 and j >= 0 and i < 3 and j < 5)

# Function to check whether the cell is delimiter
# which is (-1, -1)


def isdelim(temp):
    return (temp[0] == -1 and temp[1] == -1)

# Function to check whether there is still a fresh
# orange remaining


def checkall(arr):
    for i in range(3):
        for j in range(5):
            if (arr[i][j] == 1):
                return True
    return False

# This function finds if it is
# possible to rot all oranges or not.
# If possible, then it returns
# minimum time required to rot all,
# otherwise returns -1


def rotOranges(arr):

    # Create a queue of cells
    Q = deque()
    temp = [0, 0]
    ans = 1

    # Store all the cells having
    # rotten orange in first time frame
    for i in range(3):
        for j in range(5):
            if (arr[i][j] == 2):
                temp[0] = i
                temp[1] = j
                Q.append([i, j])

    # Separate these rotten oranges
    # from the oranges which will rotten
    # due the oranges in first time
    # frame using delimiter which is (-1, -1)
    temp[0] = -1
    temp[1] = -1
    Q.append([-1, -1])
    # print(Q)

    # Process the grid while there are
    # rotten oranges in the Queue
    while False:

        # This flag is used to determine
        # whether even a single fresh
        # orange gets rotten due to rotten
        # oranges in current time
        # frame so we can increase
        # the count of the required time.
        flag = False
        print(len(Q))

        # Process all the rotten
        # oranges in current time frame.
        while not isdelim(Q[0]):
            temp = Q[0]
            print(len(Q))

            # Check right adjacent cell that if it can be rotten
            if (isvalid(temp[0] + 1, temp[1]) and arr[temp[0] + 1][temp[1]] == 1):

                # if this is the first orange to get rotten, increase
                # count and set the flag.
                if (not flag):
                    ans, flag = ans + 1, True

                # Make the orange rotten
                arr[temp[0] + 1][temp[1]] = 2

                # append the adjacent orange to Queue
                temp[0] += 1
                Q.append(temp)

                temp[0] -= 1  # Move back to current cell

            # Check left adjacent cell that if it can be rotten
            if (isvalid(temp[0] - 1, temp[1]) and arr[temp[0] - 1][temp[1]] == 1):
                if (not flag):
                    ans, flag = ans + 1, True
                arr[temp[0] - 1][temp[1]] = 2
                temp[0] -= 1
                Q.append(temp)  # append this cell to Queue
                temp[0] += 1

            # Check top adjacent cell that if it can be rotten
            if (isvalid(temp[0], temp[1] + 1) and arr[temp[0]][temp[1] + 1] == 1):
                if (not flag):
                    ans, flag = ans + 1, True
                arr[temp[0]][temp[1] + 1] = 2
                temp[1] += 1
                Q.append(temp)  # Push this cell to Queue
                temp[1] -= 1

            # Check bottom adjacent cell if it can be rotten
            if (isvalid(temp[0], temp[1] - 1) and arr[temp[0]][temp[1] - 1] == 1):
                if (not flag):
                    ans, flag = ans + 1, True
                arr[temp[0]][temp[1] - 1] = 2
                temp[1] -= 1
                Q.append(temp)  # append this cell to Queue
            Q.popleft()

        # Pop the delimiter
        Q.popleft()

        # If oranges were rotten in
        # current frame than separate the
        # rotten oranges using delimiter
        # for the next frame for processing.
        if (len(Q) == 0):
            temp[0] = -1
            temp[1] = -1
            Q.append(temp)

        # If Queue was empty than no rotten oranges left to process so exit

    # Return -1 if all arranges could not rot, otherwise return ans.
    return ans + 1 if(checkall(arr)) else -1


# Driver program
if __name__ == '__main__':
    arr = [[2, 1, 0, 2, 1],
           [1, 0, 1, 2, 1],
           [1, 0, 0, 2, 1]]
    ans = rotOranges(arr)
    if (ans == -1):
        print("All oranges cannot rotn")
    else:
        print("Time required for all oranges to rot => ", ans)

        # This code is contributed by mohit kumar 29
C#
// C# program to find minimum time
// required to make all oranges rotten
using System;
using System.Collections.Generic;

class GFG {
    public const int R = 3;
    public const int C = 5;

    // structure for storing
    // coordinates of the cell
    public class Ele {
        public int x = 0;
        public int y = 0;
        public Ele(int x, int y)
        {
            this.x = x;
            this.y = y;
        }
    }

    // function to check whether a cell
    // is valid / invalid
    public static bool isValid(int i, int j)
    {
        return (i >= 0 && j >= 0 && i < R && j < C);
    }

    // Function to check whether the cell
    // is delimiter which is (-1, -1)
    public static bool isDelim(Ele temp)
    {
        return (temp.x == -1 && temp.y == -1);
    }

    // Function to check whether there
    // is still a fresh orange remaining
    public static bool checkAll(int[][] arr)
    {
        for (int i = 0; i < R; i++) {
            for (int j = 0; j < C; j++) {
                if (arr[i][j] == 1) {
                    return true;
                }
            }
        }
        return false;
    }

    // This function finds if it is possible
    // to rot all oranges or not. If possible,
    // then it returns minimum time required
    // to rot all, otherwise returns -1
    public static int rotOranges(int[][] arr)
    {
        // Create a queue of cells
        LinkedList<Ele> Q = new LinkedList<Ele>();
        Ele temp;
        int ans = 0;

        // Store all the cells having rotten
        // orange in first time frame
        for (int i = 0; i < R; i++) {
            for (int j = 0; j < C; j++) {
                if (arr[i][j] == 2) {
                    Q.AddLast(new Ele(i, j));
                }
            }
        }

        // Separate these rotten oranges from
        // the oranges which will rotten
        // due the oranges in first time frame
        // using delimiter which is (-1, -1)
        Q.AddLast(new Ele(-1, -1));

        // Process the grid while there are
        // rotten oranges in the Queue
        while (Q.Count > 0) {
            // This flag is used to determine
            // whether even a single fresh
            // orange gets rotten due to rotten
            // oranges in current time frame so
            // we can increase the count of the
            // required time.
            bool flag = false;

            // Process all the rotten oranges
            // in current time frame.
            while (!isDelim(Q.First.Value)) {
                temp = Q.First.Value;

                // Check right adjacent cell that
                // if it can be rotten
                if (isValid(temp.x + 1, temp.y)
                    && arr[temp.x + 1][temp.y] == 1) {
                    if (!flag) {
                        // if this is the first orange
                        // to get rotten, increase
                        // count and set the flag.
                        ans++;
                        flag = true;
                    }

                    // Make the orange rotten
                    arr[temp.x + 1][temp.y] = 2;

                    // push the adjacent orange to Queue
                    temp.x++;
                    Q.AddLast(new Ele(temp.x, temp.y));

                    // Move back to current cell
                    temp.x--;
                }

                // Check left adjacent cell that
                // if it can be rotten
                if (isValid(temp.x - 1, temp.y)
                    && arr[temp.x - 1][temp.y] == 1) {
                    if (!flag) {
                        ans++;
                        flag = true;
                    }
                    arr[temp.x - 1][temp.y] = 2;
                    temp.x--;

                    // push this cell to Queue
                    Q.AddLast(new Ele(temp.x, temp.y));
                    temp.x++;
                }

                // Check top adjacent cell that
                // if it can be rotten
                if (isValid(temp.x, temp.y + 1)
                    && arr[temp.x][temp.y + 1] == 1) {
                    if (!flag) {
                        ans++;
                        flag = true;
                    }
                    arr[temp.x][temp.y + 1] = 2;
                    temp.y++;

                    // Push this cell to Queue
                    Q.AddLast(new Ele(temp.x, temp.y));
                    temp.y--;
                }

                // Check bottom adjacent cell
                // if it can be rotten
                if (isValid(temp.x, temp.y - 1)
                    && arr[temp.x][temp.y - 1] == 1) {
                    if (!flag) {
                        ans++;
                        flag = true;
                    }
                    arr[temp.x][temp.y - 1] = 2;
                    temp.y--;

                    // push this cell to Queue
                    Q.AddLast(new Ele(temp.x, temp.y));
                }
                Q.RemoveFirst();
            }

            // Pop the delimiter
            Q.RemoveFirst();

            // If oranges were rotten in current
            // frame than separate the rotten
            // oranges using delimiter for the
            // next frame for processing.
            if (Q.Count > 0) {
                Q.AddLast(new Ele(-1, -1));
            }

            // If Queue was empty than no rotten
            // oranges left to process so exit
        }

        // Return -1 if all arranges could
        // not rot, otherwise ans
        return (checkAll(arr)) ? -1 : ans;
    }

    // Driver Code
    public static void Main(string[] args)
    {
        int[][] arr
            = new int[][] { new int[] { 2, 1, 0, 2, 1 },
                            new int[] { 1, 0, 1, 2, 1 },
                            new int[] { 1, 0, 0, 2, 1 } };

        int ans = rotOranges(arr);
        if (ans == -1) {
            Console.WriteLine("All oranges cannot rot");
        }
        else {
            Console.WriteLine("Time required for all "
                              + "oranges to rot => " + ans);
        }
    }
}

// This code is contributed by Shrikant13
Javascript
// JS program to find minimum time required to make all
// oranges rotten

// function to check whether a cell is valid / invalid


function isvalid(i, j)
{
    return (i >= 0 && j >= 0 && i < 3 && j < 5)
}

// Function to check whether the cell is delimiter
// which is (-1, -1)


function isdelim(temp)
{
    return (temp[0] == -1 && temp[1] == -1)
}

// Function to check whether there is still a fresh
// orange remaining


function checkall(arr)
{
    for (var i = 0; i < 3; i++)
        for (var j = 0; j < 5; j++)
            if (arr[i][j] == 1)
                return true
    return false
}

// This function finds if it is
// possible to rot all oranges or not.
// If possible, then it returns
// minimum time required to rot all,
// otherwise returns -1


function rotOranges(arr)
{
    // Create a queue of cells
    let Q = []
    let temp = [0, 0]
    let ans = 1

    // Store all the cells having
    // rotten orange in first time frame
    for (var i = 0; i < 3; i++)
    {
        for (var j = 0; j < 5; j++)
        {
            if (arr[i][j] == 2)
            {
                temp[0] = i
                temp[1] = j
                Q.push([i, j])
            }
        }
    }

    // Separate these rotten oranges
    // from the oranges which will rotten
    // due the oranges in first time
    // frame using delimiter which is (-1, -1)
    temp[0] = -1
    temp[1] = -1
    Q.push([-1, -1])
    // print(Q)

    // Process the grid while there are
    // rotten oranges in the Queue
    while (false)
    {
        // This flag is used to determine
        // whether even a single fresh
        // orange gets rotten due to rotten
        // oranges in current time
        // frame so we can increase
        // the count of the required time.
        flag = false
        console.log(Q.length)

        // Process all the rotten
        // oranges in current time frame.
        while (!isdelim(Q[0]))
        {
            temp = Q[0]
            console.log(Q.length)

            // Check right adjacent cell that if it can be rotten
            if (isvalid(temp[0] + 1, temp[1]) && arr[temp[0] + 1][temp[1]] == 1)
            {

                // if this is the first orange to get rotten, increase
                // count && set the flag.
                if (!flag)
                {
                    ans = ans + 1
                    flag = true
                }

                // Make the orange rotten
                arr[temp[0] + 1][temp[1]] = 2

                // append the adjacent orange to Queue
                temp[0] += 1
                Q.push(temp)

                temp[0] -= 1  // Move back to current cell
            }

            // Check left adjacent cell that if it can be rotten
            if (isvalid(temp[0] - 1, temp[1]) && arr[temp[0] - 1][temp[1]] == 1)
            {
                if (!flag)
                {
                    ans = ans + 1
                    flag = true
                }
                arr[temp[0] - 1][temp[1]] = 2
                temp[0] -= 1
                Q.push(temp)  // append this cell to Queue
                temp[0] += 1
            }

            // Check top adjacent cell that if it can be rotten
            if (isvalid(temp[0], temp[1] + 1) && arr[temp[0]][temp[1] + 1] == 1)
            {
                if (!flag)
                {
                    ans++;
                    flag = true;
                } 
                arr[temp[0]][temp[1] + 1] = 2
                temp[1] += 1
                Q.push(temp)  // Push this cell to Queue
                temp[1] -= 1
            }

            // Check bottom adjacent cell if it can be rotten
            if (isvalid(temp[0], temp[1] - 1) && arr[temp[0]][temp[1] - 1] == 1)
            {
                if (!flag)
                {
                    ans ++;
                    flag = true;
                }
                arr[temp[0]][temp[1] - 1] = 2
                temp[1] -= 1
                Q.push(temp)  // append this cell to Queue
            }
            Q.shift()

        }
        // Pop the delimiter
        Q.shift()

        // If oranges were rotten in
        // current frame than separate the
        // rotten oranges using delimiter
        // for the next frame for processing.
        if (Q.length == 0)
        {
            temp[0] = -1
            temp[1] = -1
            Q.push(temp)
        }

        // If Queue was empty than no rotten oranges left to process so exit
    }
    
    // Return -1 if all arranges could not rot, otherwise return ans.
    if (checkall(arr))
        return ans + 1 
    return -1
}

// Driver program
let arr = [[2, 1, 0, 2, 1],
           [1, 0, 1, 2, 1],
           [1, 0, 0, 2, 1]]
let ans = rotOranges(arr)
if (ans == -1)
    console.log("All oranges cannot rotn")
else
    console.log("Time required for all oranges to rot => ", ans)


// This code is contributed by phasing17

Output
Time required for all oranges to rot => 2

Time Complexity: O( R *C), Each element of the matrix can be inserted into the queue only once so the upper bound of iteration is O(R*C)
Auxiliary Space: O(R*C), To store the elements in a queue.



Previous Article
Next Article

Similar Reads

Minimum time required to rot all oranges | Dynamic Programming
Given a matrix of dimension m * n where each cell in the matrix can have values 0, 1, or 2 which has the following meaning: 0: Empty cell 1: Cells have fresh oranges 2: Cells have rotten oranges So the task is to determine what is the minimum time required so that all the oranges become rotten. A rotten orange at index [i, j] can rot other fresh or
15 min read
Total Oranges Collection between Given Tree Positions
Given n trees arranged in linear order. The position of trees and oranges contained by a tree is represented by 2D integer array trees[] where 'trees[i] = {x, y}' represents that a tree exists on position 'x' and it contains 'y' oranges on it. There are also q queries[] where queries[i] = {left, right}. For each query, we need to find out the total
10 min read
Minimum time required to complete all tasks with alteration of their order allowed
Given a string S consisting of N characters (representing the tasks to perform) and a positive integer K, the task is to find the minimum time required to complete all the given tasks in any order, given that each task takes one unit of time and each task of the same type must be performed at an interval of K units. Examples: Input: S = "AAABBB", K
8 min read
Minimum time required to transport all the boxes from source to the destination under the given constraints
Given two arrays, box[] and truck[], where box[i] represents the weight of the ith box and truck[i] represents the maximum load that the ith truck can carry. Now each truck takes 1 hour to transport a box from source to destination and another one hour to come back. Now, given that all the boxes are kept at the source, the task is to find the minim
10 min read
Minimum time required to visit all the special nodes of a Tree
Given an undirected tree consisting of N vertices where some of the nodes are special nodes, the task is to visit all the special nodes from the root node in minimum time. Time for traveling from one node to another node can be assumed as unit time. A node is special if the path from the root to the node consists of distinct value nodes. Example: I
14 min read
Minimum time required to color all edges of a Tree
Given an array of pairs Edges[][], representing edges connecting vertices in a Tree consisting of N nodes, the task is to find the minimum time required to color all the edges of a Tree based on the assumption that coloring an edge requires 1 unit of time. Note: Multiple edges can be colored on a particular instant, but a node can be part of only o
7 min read
Minimum time required by n cars to travel through all of the m roads
Given m roads and n cars. The cars are numbered from 1 to n. You are also given an array arr[] of size m, each road has a value arr[i] - the index of a car that runs fast on this road. If a car is fast on a road, then it travels across the road in 1 hour, else it takes 2 hours (if not proficient) to travel through this road. Find out the minimum ti
13 min read
Minimum time required to infect all the nodes of Binary tree
Given a binary tree and a node start that is initially infected. For every second, neighbours of an infected node get infected. The task is to find the minimum time in which the whole tree will be infected. Examples: Input: 10 / \ 12 13 / \ 14 15 / \ / \21 22 23 24Start = 14Output: 3 Input: 3 / \ 4 1 \ 2Start = 1Output: 2 An approach using BFS (Bre
15+ min read
Minimum time required to complete all tasks without altering their order
Given a string S consisting of N characters (representing the tasks to perform) and a positive integer K, the task is to find the minimum time required to complete all the given tasks in the given order such that each task takes one unit of time and each task of the same type must be performed at an interval of K units. Examples: Input: S = "ABACCA
6 min read
Count of minimum reductions required to get the required sum K
Given N pairs of integers and an integer K, the task is to find the minimum number of reductions required such that the sum of the first elements of each pair is ? K.Each reduction involves reducing the first value of a pair to its second value. If it is not possible to make the sum ? K, print -1. Examples: Input: N = 5, K = 32 10 6 6 4 8 5 9 8 5 2
6 min read
three90RightbarBannerImg