Open In App

Snake and Ladder Problem

Last Updated : 18 Apr, 2024
Improve
Improve
Like Article
Like
Save
Share
Report

Given a snake and ladder board, find the minimum number of dice throws required to reach the destination or last cell from the source or 1st cell. Basically, the player has total control over the outcome of the dice throw and wants to find out the minimum number of throws required to reach the last cell.
If the player reaches a cell which is the base of a ladder, the player has to climb up that ladder and if reaches a cell is the mouth of the snake, and has to go down to the tail of the snake without a dice throw.

Example:

Input:

snakesandladders

Output: 3
Explaination: Following are the steps:

  • First throw two dice to reach cell number 3 and then ladder to reach 22 
  • Then throw 6 to reach 28.
  • Finally through 2 to reach 30.
  • There can be other solutions as well like (2, 2, 6), (2, 4, 4), (2, 3, 5).. etc.

    Snake and Ladder Problem using Breadth-First Search:

    The idea is to consider the given snake and ladder board as a directed graph with a number of vertices equal to the number of cells in the board. The problem reduces to finding the shortest path in a graph. Every vertex of the graph has an edge to next six vertices if the next 6 vertices do not have a snake or ladder. If any of the next six vertices has a snake or ladder, then the edge from the current vertex goes to the top of the ladder or tail of the snake. Since all edges are of equal weight, we can efficiently find the shortest path using Breadth-First Search of the graph. 

    Following is the implementation of the above idea.

    C++
    // C++ program to find minimum number of dice throws
    // required to reach last cell from first cell of a given
    // snake and ladder board
    #include <iostream>
    #include <queue>
    using namespace std;
    
    // An entry in queue used in BFS
    struct queueEntry {
        int v; // Vertex number
        int dist; // Distance of this vertex from source
    };
    
    // This function returns minimum number of dice throws
    // required to Reach last cell from 0'th cell in a snake and
    // ladder game. move[] is an array of size N where N is no.
    // of cells on board If there is no snake or ladder from
    // cell i, then move[i] is -1 Otherwise move[i] contains
    // cell to which snake or ladder at i takes to.
    int getMinDiceThrows(int move[], int N)
    {
        // The graph has N vertices. Mark all the vertices as
        // not visited
        bool* visited = new bool[N];
        for (int i = 0; i < N; i++)
            visited[i] = false;
    
        // Create a queue for BFS
        queue<queueEntry> q;
    
        // Mark the node 0 as visited and enqueue it.
        visited[0] = true;
        queueEntry s
            = { 0, 0 }; // distance of 0't vertex is also 0
        q.push(s); // Enqueue 0'th vertex
    
        // Do a BFS starting from vertex at index 0
        queueEntry qe; // A queue entry (qe)
        while (!q.empty()) {
            qe = q.front();
            int v = qe.v; // vertex no. of queue entry
    
            // If front vertex is the destination vertex,
            // we are done
            if (v == N - 1)
                break;
    
            // Otherwise dequeue the front vertex and enqueue
            // its adjacent vertices (or cell numbers reachable
            // through a dice throw)
            q.pop();
            for (int j = v + 1; j <= (v + 6) && j < N; ++j) {
                // If this cell is already visited, then ignore
                if (!visited[j]) {
                    // Otherwise calculate its distance and mark
                    // it as visited
                    queueEntry a;
                    a.dist = (qe.dist + 1);
                    visited[j] = true;
    
                    // Check if there a snake or ladder at 'j'
                    // then tail of snake or top of ladder
                    // become the adjacent of 'i'
                    if (move[j] != -1)
                        a.v = move[j];
                    else
                        a.v = j;
                    q.push(a);
                }
            }
        }
    
        // We reach here when 'qe' has last vertex
        // return the distance of vertex in 'qe'
        return qe.dist;
    }
    
    // Driver program to test methods of graph class
    int main()
    {
        // Let us construct the board given in above diagram
        int N = 30;
        int moves[N];
        for (int i = 0; i < N; i++)
            moves[i] = -1;
    
        // Ladders
        moves[2] = 21;
        moves[4] = 7;
        moves[10] = 25;
        moves[19] = 28;
    
        // Snakes
        moves[26] = 0;
        moves[20] = 8;
        moves[16] = 3;
        moves[18] = 6;
    
        cout << "Min Dice throws required is "
             << getMinDiceThrows(moves, N);
        return 0;
    }
    
    Java
    // Java program to find minimum number of dice
    // throws required to reach last cell from first
    // cell of a given snake and ladder board
    
    import java.util.LinkedList;
    import java.util.Queue;
    
    public class SnakesLadder {
        // An entry in queue used in BFS
        static class qentry {
            int v; // Vertex number
            int dist; // Distance of this vertex from source
        }
    
        // This function returns minimum number of dice
        // throws required to Reach last cell from 0'th cell
        // in a snake and ladder game. move[] is an array of
        // size N where N is no. of cells on board If there
        // is no snake or ladder from cell i, then move[i]
        // is -1 Otherwise move[i] contains cell to which
        // snake or ladder at i takes to.
        static int getMinDiceThrows(int move[], int n)
        {
            int visited[] = new int[n];
            Queue<qentry> q = new LinkedList<>();
            qentry qe = new qentry();
            qe.v = 0;
            qe.dist = 0;
    
            // Mark the node 0 as visited and enqueue it.
            visited[0] = 1;
            q.add(qe);
    
            // Do a BFS starting from vertex at index 0
            while (!q.isEmpty()) {
                qe = q.remove();
                int v = qe.v;
    
                // If front vertex is the destination
                // vertex, we are done
                if (v == n - 1)
                    break;
    
                // Otherwise dequeue the front vertex and
                // enqueue its adjacent vertices (or cell
                // numbers reachable through a dice throw)
                for (int j = v + 1; j <= (v + 6) && j < n;
                     ++j) {
                    // If this cell is already visited, then
                    // ignore
                    if (visited[j] == 0) {
                        // Otherwise calculate its distance and
                        // mark it as visited
                        qentry a = new qentry();
                        a.dist = (qe.dist + 1);
                        visited[j] = 1;
    
                        // Check if there a snake or ladder at
                        // 'j' then tail of snake or top of
                        // ladder become the adjacent of 'i'
                        if (move[j] != -1)
                            a.v = move[j];
                        else
                            a.v = j;
                        q.add(a);
                    }
                }
            }
    
            // We reach here when 'qe' has last vertex
            // return the distance of vertex in 'qe'
            return qe.dist;
        }
    
        public static void main(String[] args)
        {
            // Let us construct the board given in above diagram
            int N = 30;
            int moves[] = new int[N];
            for (int i = 0; i < N; i++)
                moves[i] = -1;
    
            // Ladders
            moves[2] = 21;
            moves[4] = 7;
            moves[10] = 25;
            moves[19] = 28;
    
            // Snakes
            moves[26] = 0;
            moves[20] = 8;
            moves[16] = 3;
            moves[18] = 6;
    
            System.out.println("Min Dice throws required is "
                               + getMinDiceThrows(moves, N));
        }
    }
    
    Python3
    # Python3 program to find minimum number
    # of dice throws required to reach last
    # cell from first cell of a given
    # snake and ladder board
    
    # An entry in queue used in BFS
    
    
    class QueueEntry(object):
        def __init__(self, v=0, dist=0):
            self.v = v
            self.dist = dist
    
    
    '''This function returns minimum number of
    dice throws required to. Reach last cell 
    from 0'th cell in a snake and ladder game.
    move[] is an array of size N where N is 
    no. of cells on board. If there is no 
    snake or ladder from cell i, then move[i] 
    is -1. Otherwise move[i] contains cell to
    which snake or ladder at i takes to.'''
    
    
    def getMinDiceThrows(move, N):
    
        # The graph has N vertices. Mark all
        # the vertices as not visited
        visited = [False] * N
    
        # Create a queue for BFS
        queue = []
    
        # Mark the node 0 as visited and enqueue it
        visited[0] = True
    
        # Distance of 0't vertex is also 0
        # Enqueue 0'th vertex
        queue.append(QueueEntry(0, 0))
    
        # Do a BFS starting from vertex at index 0
        qe = QueueEntry()  # A queue entry (qe)
        while queue:
            qe = queue.pop(0)
            v = qe.v  # Vertex no. of queue entry
    
            # If front vertex is the destination
            # vertex, we are done
            if v == N - 1:
                break
    
            # Otherwise dequeue the front vertex
            # and enqueue its adjacent vertices
            # (or cell numbers reachable through
            # a dice throw)
            j = v + 1
            while j <= v + 6 and j < N:
    
                # If this cell is already visited,
                # then ignore
                if visited[j] is False:
    
                    # Otherwise calculate its
                    # distance and mark it
                    # as visited
                    a = QueueEntry()
                    a.dist = qe.dist + 1
                    visited[j] = True
    
                    # Check if there a snake or ladder
                    # at 'j' then tail of snake or top
                    # of ladder become the adjacent of 'i'
                    a.v = move[j] if move[j] != -1 else j
    
                    queue.append(a)
    
                j += 1
    
        # We reach here when 'qe' has last vertex
        # return the distance of vertex in 'qe
        return qe.dist
    
    
    # driver code
    N = 30
    moves = [-1] * N
    
    # Ladders
    moves[2] = 21
    moves[4] = 7
    moves[10] = 25
    moves[19] = 28
    
    # Snakes
    moves[26] = 0
    moves[20] = 8
    moves[16] = 3
    moves[18] = 6
    
    print("Min Dice throws required is {0}".
          format(getMinDiceThrows(moves, N)))
    
    # This code is contributed by Ajitesh Pathak
    
    C#
    // C# program to find minimum
    // number of dice throws required
    // to reach last cell from first
    // cell of a given snake and ladder board
    using System;
    using System.Collections.Generic;
    
    public class SnakesLadder {
        // An entry in queue used in BFS
        public class qentry {
            public int v; // Vertex number
            public int
                dist; // Distance of this vertex from source
        }
    
        // This function returns minimum number of dice
        // throws required to Reach last cell from 0'th cell
        // in a snake and ladder game. move[] is an array of
        // size N where N is no. of cells on board If there
        // is no snake or ladder from cell i, then move[i]
        // is -1 Otherwise move[i] contains cell to which
        // snake or ladder at i takes to.
        static int getMinDiceThrows(int[] move, int n)
        {
            int[] visited = new int[n];
            Queue<qentry> q = new Queue<qentry>();
            qentry qe = new qentry();
            qe.v = 0;
            qe.dist = 0;
    
            // Mark the node 0 as visited and enqueue it.
            visited[0] = 1;
            q.Enqueue(qe);
    
            // Do a BFS starting from vertex at index 0
            while (q.Count != 0) {
                qe = q.Dequeue();
                int v = qe.v;
    
                // If front vertex is the destination
                // vertex, we are done
                if (v == n - 1)
                    break;
    
                // Otherwise dequeue the front vertex and
                // enqueue its adjacent vertices (or cell
                // numbers reachable through a dice throw)
                for (int j = v + 1; j <= (v + 6) && j < n;
                     ++j) {
                    // If this cell is already visited, then
                    // ignore
                    if (visited[j] == 0) {
                        // Otherwise calculate its distance and
                        // mark it as visited
                        qentry a = new qentry();
                        a.dist = (qe.dist + 1);
                        visited[j] = 1;
    
                        // Check if there a snake or ladder at
                        // 'j' then tail of snake or top of
                        // ladder become the adjacent of 'i'
                        if (move[j] != -1)
                            a.v = move[j];
                        else
                            a.v = j;
                        q.Enqueue(a);
                    }
                }
            }
    
            // We reach here when 'qe' has last vertex
            // return the distance of vertex in 'qe'
            return qe.dist;
        }
    
        // Driver code
        public static void Main(String[] args)
        {
            // Let us construct the board
            // given in above diagram
            int N = 30;
            int[] moves = new int[N];
            for (int i = 0; i < N; i++)
                moves[i] = -1;
    
            // Ladders
            moves[2] = 21;
            moves[4] = 7;
            moves[10] = 25;
            moves[19] = 28;
    
            // Snakes
            moves[26] = 0;
            moves[20] = 8;
            moves[16] = 3;
            moves[18] = 6;
    
            Console.WriteLine("Min Dice throws required is "
                              + getMinDiceThrows(moves, N));
        }
    }
    
    // This code has been contributed by 29AjayKumar
    
    Javascript
    <script>
    // Javascript program to find minimum number of dice 
    // throws required to reach last cell from first 
    // cell of a given snake and ladder board
    
    class qentry 
    {
        constructor()
        {
            this.v = 0;
            this.dist = 0;
        }
    }
    
    // This function returns minimum number of dice 
        // throws required to Reach last cell from 0'th cell 
        // in a snake and ladder game. move[] is an array of 
        // size N where N is no. of cells on board If there 
        // is no snake or ladder from cell i, then move[i] 
        // is -1 Otherwise move[i] contains cell to which 
        // snake or ladder at i takes to.
    function getMinDiceThrows(move,n)
    {
        let visited = new Array(n);
        for(let i = 0; i < n; i++)
            visited[i] = false;
            let q = [];
            let qe = new qentry();
            qe.v = 0;
            qe.dist = 0;
      
            // Mark the node 0 as visited and enqueue it.
            visited[0] = 1;
            q.push(qe);
      
            // Do a BFS starting from vertex at index 0
            while (q.length != 0) 
            {
                qe = q.shift();
                let v = qe.v;
      
                // If front vertex is the destination 
                // vertex, we are done
                if (v == n - 1)
                    break;
      
                // Otherwise dequeue the front vertex and 
                // enqueue its adjacent vertices (or cell 
                // numbers reachable through a dice throw)
                for (let j = v + 1; j <= (v + 6) && j < n; ++j) 
                {
                    // If this cell is already visited, then ignore
                    if (visited[j] == 0)
                    {
                        // Otherwise calculate its distance and 
                        // mark it as visited
                        let a = new qentry();
                        a.dist = (qe.dist + 1);
                        visited[j] = 1;
      
                        // Check if there a snake or ladder at 'j'
                        // then tail of snake or top of ladder
                        // become the adjacent of 'i'
                        if (move[j] != -1)
                            a.v = move[j];
                        else
                            a.v = j;
                        q.push(a);
                    }
                }
            }
      
            // We reach here when 'qe' has last vertex
            // return the distance of vertex in 'qe'
            return qe.dist;
    }
    
    // Let us construct the board given in above diagram
    let N = 30;
    let moves = new Array(N);
    for (let i = 0; i < N; i++)
        moves[i] = -1;
    
    // Ladders
    moves[2] = 21;
    moves[4] = 7;
    moves[10] = 25;
    moves[19] = 28;
    
    // Snakes
    moves[26] = 0;
    moves[20] = 8;
    moves[16] = 3;
    moves[18] = 6;
    
    document.write("Min Dice throws required is " + 
                       getMinDiceThrows(moves, N));
    
    // This code is contributed by avanitrachhadiya2155
    </script>
    

    Output
    Min Dice throws required is 3

    Time complexity: O(N) as every cell is added and removed only once from the queue. And a typical enqueue or dequeue operation takes O(1) time. 
    Auxiliary Space : O(N)

    Snake and Ladder Problem using Recursion:

    We can think of is recursion in which we will be going to each block, in this case, which is from 1 to 30, and keeping a count of a minimum number of throws of dice at block i and storing it in an array t.

    So, basically, we will:

    • Create an array, let’s say ‘t’, and initialize it with -1.
    • Now we will call a recursive function from block 1, with variable let’s say ‘i’, and we will be incrementing this.
    • In this we will define the base condition as whenever block number reaches 30 or beyond we will return 0 and we will also check if this block has been visited before, this we will do by checking the value of t[i], if this is -1 then it means its not visited and we move forward with the function else its visited and we will return value of t[i].
    •  After checking base cases we will initialize a variable ‘min’ with a max integer value.
    • Now we will initiate a loop from 1 to 6, i.e the values of a dice, now for each iteration we will increase the value of i by the value of dice(eg: i+1,i+2….i+6) and we will check if any increased value has a ladder on it if there is then we will update the value of i to the end of the ladder and then pass the value to the recursive function, if there is no ladder then also we will pass the incremented value of i based on dice value to a recursive function, but if there is a snake then we won’t pass this value to recursive function as we want to reach the end as soon as possible, and the best of doing this would be not to be bitten by a snake. And we would be keep on updating the minimum value for variable ‘min’.
    • Finally we will update t[i] with min and return t[i].

    Below is the implementation of the above approach:

    C++
    #include <climits>
    #include <iostream>
    #include <unordered_map>
    #include <vector>
    
    using namespace std;
    
    int t[31];
    
    // recursive function
    int sol(int i, unordered_map<int, int>& h)
    {
        // base condition
        if (i >= 30)
            return 0;
    
        // checking if block is already visited or
        // not(memoization).
        else if (t[i] != -1)
            return t[i];
    
        // initialising min as max int value
        int min_value = INT_MAX;
    
        // for loop for every dice value from 1 to 6
        for (int j = 1; j <= 6; j++) {
            // incrementing value of i with dice value i.e j
            // taking new variable k
            //->taking new variable so that we dont change i
            // as we will need it again in another iteration
            int k = i + j;
            if (h.count(k) > 0) {
                // checking if this is a snake or ladder
                // if a snake then we continue as we dont
                // need a snake
                if (h[k] < k)
                    continue;
                // updating if it's a ladder to ladder end value
                k = h[k];
            }
            // updating min in every iteration for getting
            // minimum throws from this particular block
            min_value = min(min_value, sol(k, h) + 1);
        }
        // updating value of t[i] to min
        // memoization
        t[i] = min_value;
        return t[i];
    }
    
    int min_throw(int n, vector<int> arr)
    {
        // Initialise an array t of length 31, we will use from
        // index to 1 to 30
        for (int i = 0; i < 31; i++) {
            // initialising every index of t with -1
            t[i] = -1;
        }
    
        // create a dictionary to store snakes and ladders start
        // and end for better efficiency
        unordered_map<int, int> h;
        for (int i = 0; i < 2 * n; i += 2) {
            // store start as key and end as value
            h[arr[i]] = arr[i + 1];
        }
    
        // final ans
        return sol(1, h);
    }
    
    int main()
    {
        // Given a 5x6 snakes and ladders board
        // You are given an integer N denoting the total
        // number of snakes and ladders and a list arr[]
        // of 2*N size where 2*i and (2*i + 1)th values
        // denote the starting and ending point respectively
        // of ith snake or ladder
        int N = 8;
        vector<int> arr{ 3,  22, 5,  8, 11, 26, 20, 29,
                         17, 4,  19, 7, 27, 1,  29, 9 };
    
        cout << "Min Dice throws required is "
             << min_throw(N, arr) << endl;
    
        return 0;
    }
    // This code is contributed by sanjanasikarwar24
    
    Java
    /*package whatever //do not write package name here */
    
    import java.io.*;
    import java.util.*;
    
    class GFG {
    
        // Initialise an array t of length 31, we will use from
        // index to 1 to 30
        static int[] t = new int[31];
    
        static int minThrow(int n, int arr[])
        {
            // code here
            for (int i = 0; i < 31; i++) {
                // initialising every index of t with -1
                t[i] = -1;
            }
            // create hashmap to store snakes and ladders start
            // and end for better efficiency
            HashMap<Integer, Integer> h = new HashMap<>();
            for (int i = 0; i < 2 * n; i = i + 2) {
                // store start as key and end as value
                h.put(arr[i], arr[i + 1]);
            }
            // final ans
            return sol(1, h);
        }
    
        // recursive function
        static int sol(int i, HashMap<Integer, Integer> h)
        {
            // base condintion
            if (i >= 30)
                return 0;
    
            // checking if block is already visited or
            // not(memoization).
            else if (t[i] != -1)
                return t[i];
    
            // initialising min as max int value
            int min = Integer.MAX_VALUE;
    
            // for loop for every dice value from 1 to 6
            for (int j = 1; j <= 6; j++) {
                // incrementing value of i with dice value i.e j
                // taking new variable k
                //->taking new variable so that we dont change i
                // as we will need it again in another iteration
                int k = i + j;
                if (h.containsKey(k)) {
                    // checking if this is a snake of ladder
                    // if a snake then we continue as we dont
                    // need a snake
                    if (h.get(k) < k)
                        continue;
                    // updating if its a ladder to ladder end
                    // value
                    k = h.get(k);
                }
                // updating min in every iteration for getting
                // minimum throws from this particular block
                min = Math.min(min, sol(k, h) + 1);
            }
            // updating value of t[i] to min
            // memoization
            t[i] = min;
            return t[i];
        }
    
        // main
        public static void main(String[] args)
        {
            // Given a 5x6 snakes and ladders board
            // You are given an integer N denoting the total
            // number of snakes and ladders and an array arr[]
            // of 2*N size where 2*i and (2*i + 1)th values
            // denote the starting and ending point respectively
            // of ith snake or ladder
            int N = 8;
            int[] arr = new int[2 * N];
            arr[0] = 3;
            arr[1] = 22;
            arr[2] = 5;
            arr[3] = 8;
            arr[4] = 11;
            arr[5] = 26;
            arr[6] = 20;
            arr[7] = 29;
            arr[8] = 17;
            arr[9] = 4;
            arr[10] = 19;
            arr[11] = 7;
            arr[12] = 27;
            arr[13] = 1;
            arr[14] = 29;
            arr[15] = 9;
    
            System.out.println("Min Dice throws required is "
                               + minThrow(N, arr));
        }
    }
    
    Python3
    from typing import List, Dict
    
    
    def min_throw(n: int, arr: List[int]) -> int:
        # Initialise an array t of length 31, we will use from
        # index to 1 to 30
        t = [-1] * 31
    
        # create a dictionary to store snakes and ladders start
        # and end for better efficiency
        h = {}
        for i in range(0, 2 * n, 2):
            # store start as key and end as value
            h[arr[i]] = arr[i + 1]
    
        # final ans
        return sol(1, h, t)
    
    # recursive function
    
    
    def sol(i: int, h: Dict[int, int], t: List[int]) -> int:
        # base condition
        if i >= 30:
            return 0
    
        # checking if block is already visited or
        # not(memoization).
        elif t[i] != -1:
            return t[i]
    
        # initialising min as max int value
        min_value = float("inf")
    
        # for loop for every dice value from 1 to 6
        for j in range(1, 7):
            # incrementing value of i with dice value i.e j
            # taking new variable k
            # ->taking new variable so that we dont change i
            # as we will need it again in another iteration
            k = i + j
            if k in h:
                # checking if this is a snake or ladder
                # if a snake then we continue as we dont
                # need a snake
                if h[k] < k:
                    continue
                # updating if it's a ladder to ladder end value
                k = h[k]
            # updating min in every iteration for getting
            # minimum throws from this particular block
            min_value = min(min_value, sol(k, h, t) + 1)
    
        # updating value of t[i] to min
        # memoization
        t[i] = min_value
        return t[i]
    
    
    # Given a 5x6 snakes and ladders board
    # You are given an integer N denoting the total
    # number of snakes and ladders and a list arr[]
    # of 2*N size where 2*i and (2*i + 1)th values
    # denote the starting and ending point respectively
    # of ith snake or ladder
    N = 8
    arr = [3, 22, 5, 8, 11, 26, 20, 29, 17, 4, 19, 7, 27, 1, 29, 9]
    
    print("Min Dice throws required is", min_throw(N, arr))
    # This code is contributed by sanjanasikarwar24
    
    C#
    using System;
    using System.Collections.Generic;
    
    class GFG {
        
        static int[] t=new int[31];
        
        // recursive function
        static int sol(int i, Dictionary<int, int> h)
        {
            // base condition
            if (i >= 30)
                return 0;
        
            // checking if block is already visited or
            // not(memoization).
            else if (t[i] != -1)
                return t[i];
        
            // initialising min as max int value
            int min_value =Int32.MaxValue;
    ;
        
            // for loop for every dice value from 1 to 6
            for (int j = 1; j <= 6; j++) {
                // incrementing value of i with dice value i.e j
                // taking new variable k
                //->taking new variable so that we dont change i
                // as we will need it again in another iteration
                int k = i + j;
                if (h.ContainsKey(k)) {
                    // checking if this is a snake or ladder
                    // if a snake then we continue as we dont
                    // need a snake
                    if (h[k] < k)
                        continue;
                    // updating if it's a ladder to ladder end value
                    k = h[k];
                }
                // updating min in every iteration for getting
                // minimum throws from this particular block
                min_value = Math.Min(min_value, sol(k, h) + 1);
            }
            // updating value of t[i] to min
            // memoization
            t[i] = min_value;
            return t[i];
        }
        
        static int min_throw(int n, List<int> arr)
        {
            // Initialise an array t of length 31, we will use from
            // index to 1 to 30
            for (int i = 0; i < 31; i++) {
                // initialising every index of t with -1
                t[i] = -1;
            }
        
            // create a dictionary to store snakes and ladders start
            // and end for better efficiency
            Dictionary<int, int> h= new Dictionary<int, int>();
            
            for (int i = 0; i < 2 * n; i += 2) {
                // store start as key and end as value
                h.Add(arr[i], arr[i + 1]);
            }
        
            // final ans
            return sol(1, h);
        }
        
        public static void Main()
        {
            // Given a 5x6 snakes and ladders board
            // You are given an integer N denoting the total
            // number of snakes and ladders and a list arr[]
            // of 2*N size where 2*i and (2*i + 1)th values
            // denote the starting and ending point respectively
            // of ith snake or ladder
            int N = 8;
            List<int> arr=new List<int>{ 3,  22, 5,  8, 11, 26, 20, 29,
                             17, 4,  19, 7, 27, 1,  29, 9 };
        
            Console.Write("Min Dice throws required is "+ min_throw(N, arr));
        }
    }
    
    Javascript
    let t=new Array(31);
    
    // recursive function
    function sol(i, h)
    {
        // base condition
        if (i >= 30)
            return 0;
    
        // checking if block is already visited or
        // not(memoization).
        else if (t[i] != -1)
            return t[i];
    
        // initialising min as max int value
        let min_value = Number.MAX_SAFE_INTEGER;
    
        // for loop for every dice value from 1 to 6
        for (let j = 1; j <= 6; j++) {
            // incrementing value of i with dice value i.e j
            // taking new variable k
            //->taking new variable so that we dont change i
            // as we will need it again in another iteration
            let k = i + j;
            if (h.has(k)) {
                // checking if this is a snake or ladder
                // if a snake then we continue as we dont
                // need a snake
                if (h.get(k) < k)
                    continue;
                // updating if it's a ladder to ladder end value
                k = h.get(k);
            }
            // updating min in every iteration for getting
            // minimum throws from this particular block
            min_value = Math.min(min_value, sol(k, h) + 1);
        }
        // updating value of t[i] to min
        // memoization
        t[i] = min_value;
        return t[i];
    }
    
    function min_throw(n, arr)
    {
        // Initialise an array t of length 31, we will use from
        // index to 1 to 30
        for (let i = 0; i < 31; i++) {
            // initialising every index of t with -1
            t[i] = -1;
        }
    
        // create a dictionary to store snakes and ladders start
        // and end for better efficiency
        let h=new Map();
        for (let i = 0; i < 2 * n; i += 2) {
            // store start as key and end as value
            h.set(arr[i],arr[i + 1]);
        }
    
        // final ans
        return sol(1, h);
    }
    
    // Given a 5x6 snakes and ladders board
    // You are given an integer N denoting the total
    // number of snakes and ladders and a list arr[]
    // of 2*N size where 2*i and (2*i + 1)th values
    // denote the starting and ending point respectively
    // of ith snake or ladder
    let N = 8;
    let arr=[ 3,  22, 5,  8, 11, 26, 20, 29,
                     17, 4,  19, 7, 27, 1,  29, 9 ];
    
    console.log("Min Dice throws required is "+ min_throw(N, arr));
    

    Output
    Min Dice throws required is 3
    

    Time complexity: O(N).
    Auxiliary Space O(N)


     



    Previous Article
    Next Article

    Similar Reads

    Word Ladder (Length of shortest chain to reach a target word)
    Given a dictionary, and two words 'start' and 'target' (both of same length). Find length of the smallest chain from 'start' to 'target' if it exists, such that adjacent words in the chain only differ by one character and each word in the chain is a valid word i.e., it exists in the dictionary. It may be assumed that the 'target' word exists in dic
    15+ min read
    Program to print the Ladder Pattern
    Given an integer N, the task is to print the ladder with N steps using '*'. The ladder will be with the gap of 3 spaces between two side rails. Input: N = 3 Output: * * * * ***** * * * * ***** * * * * ***** * * * * Input: N = 4 Output: * * * * ***** * * * * ***** * * * * ***** * * * * ***** * * * * Approach: Dividing the pattern into two sub-patter
    4 min read
    Word Ladder - Set 2 ( Bi-directional BFS )
    Given a dictionary, and two words start and target (both of the same length). Find length of the smallest chain from start to target if it exists, such that adjacent words in the chain only differ by one character and each word in the chain is a valid word i.e., it exists in the dictionary. It may be assumed that the target word exists in the dicti
    15+ min read
    Ladder Graph Using Networkx Module in Python
    In this article, we are going to see the ladder graph using Python. It is a graph that looks like ladders used commonly with every node attached to two other nodes in a specific manner. We can obtain a ladder graph by joining two-path graphs of n nodes each by each node connected with a corresponding node in another path graph. Representation: Belo
    2 min read
    Print matrix in snake pattern from the last column
    Given a matrix of 2-Dimensional array of n rows and n columns. Print this matrix in snake fashion starting from column n-1 as shown in the figure below . Examples: Input : mat[][] = 1 2 3 4 5 6 7 8 9 Output: 3 2 1 4 5 6 9 8 7 Input: mat[][] = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Output: 4 3 2 1 5 6 7 8 12 11 10 9 13 14 15 16 Algorithm: Start trav
    6 min read
    Convert camel case string to snake case in Java
    Given a string in camel case, the task is to write a Java program to convert the given string from camel case to snake case and print the modified string. Examples: Input: GeeksForGeeks Output: geeks_for_geeks Input: CamelCaseToSnakeCase Output: camel_case_to_snake_case Method 1: Naive Approach First we initialize a variable 'result' with an empty
    3 min read
    Convert Snake Case string to Camel Case in Java
    Given a string in Snake Case, the task is to write a Java program to convert the given string from snake case to camel case and print the modified string. Examples: Input: str = "geeks_for_geeks" Output: GeeksForGeeks Input: str = "snake_case_to_camel_case" Output: SnakeCaseToCamelCase Method 1: Using TraversalThe idea is to first capitalize the fi
    3 min read
    POTD Solutions | 8 Nov’ 23 | Print Matrix in snake Pattern
    View all POTD Solutions Welcome to the daily solutions of our PROBLEM OF THE DAY (POTD). We will discuss the entire problem step-by-step and work towards developing an optimized solution. This will not only help you brush up on your concepts of Matrix but will also help you build up problem-solving skills. We recommend you to try this problem on ou
    3 min read
    Snake case of a given sentence
    Given a sentence, task is to remove spaces from the sentence and rewrite in Snake case. It is a style of writing where we replace spaces with underscore and all words begin with small letters. Examples : Input : I got intern at geeksforgeeksOutput : i_got_intern_at_geeksforgeeks Input : Here comes the gardenOutput : here_comes_the_garden Recommende
    4 min read
    Java Program to Print matrix in snake pattern
    Given an n x n matrix .In the given matrix, you have to print the elements of the matrix in the snake pattern. Examples : Input :mat[][] = { {10, 20, 30, 40}, {15, 25, 35, 45}, {27, 29, 37, 48}, {32, 33, 39, 50}}; Output : 10 20 30 40 45 35 25 15 27 29 37 48 50 39 33 32 Input :mat[][] = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9}}; Output : 1 2 3 6 5 4 7 8 9
    2 min read