Open In App

Find the first circular tour that visits all petrol pumps

Last Updated : 19 Apr, 2024
Improve
Improve
Like Article
Like
Save
Share
Report

Given information about N petrol pumps (say arr[]) that are present in a circular path. The information consists of the distance of the next petrol pump from the current one (in arr[i][1]) and the amount of petrol stored in that petrol pump (in arr[i][0]). Consider a truck with infinite capacity that consumes 1 unit of petrol to travel 1 unit distance. The task is to find the index of the first starting point such that the truck can visit all the petrol pumps and come back to that starting point.

Note: Return -1 if no such tour exists.

Examples:

Input: arr[] = {{4, 6}, {6, 5}, {7, 3}, {4, 5}}. 
Output: 1
Explanation: If started from 1st index then a circular tour can be covered.

Input: arr[] {{6, 4}, {3, 6}, {7, 3}}
Output: 2

Recommended Practice

Naive Approach:

As the capacity of the truck is infinite it is feasible to fill the truck with all the amount of petrol available at each petrol pump.

A Simple Solution is to consider every petrol pumps as a starting point and see if there is a possible tour. If we find a starting point with a feasible solution, we return that starting point. 

Time Complexity: O(N2)
Auxiliary Space: O(1)

First Circular Tour Using Queue:

Instead of checking the whole array for each starting point, we can store the current tour inside a queue

At the moment, the current amount of petrol becomes inefficient (i.e., negative) to reach the next petrol pump, remove the current starting point from the queue and consider the next point as the new starting point.

Instead of building a separate queue, we can use the array itself as a queue with the help of start and end pointers.

Note: Each petrol pump will be added in the queue at most twice and will be removed at most once.

Illustration:

Below image is a dry run of the above approach:

Follow the below steps to implement the idea:

  • Set two pointers, start = 0 and end = 1 to use the array as a queue.
    • If the amount of petrol is efficient to reach the next petrol pump then increment the end pointer (circularly).
    • Otherwise, remove the starting point of the current tour, i.e., increment the start pointer.
  • If the start pointer reaches N then such a tour is not possible. Otherwise, return the starting point of the tour.

Below is the implementation of the above approach:

C++




// C++ program to find circular tour for a truck 
#include <bits/stdc++.h>
using namespace std; 
  
// A petrol pump has petrol and distance to next petrol pump 
class petrolPump 
{
    public:
    int petrol; 
    int distance; 
}; 
  
// The function returns starting point if there is a possible solution, 
// otherwise returns -1 
int printTour(petrolPump arr[], int n) 
    // Consider first petrol pump as a starting point 
    int start = 0; 
    int end = 1; 
  
    int curr_petrol = arr[start].petrol - arr[start].distance; 
  
    /* Run a loop while all petrol pumps are not visited. 
    And we have reached first petrol pump again with 0 or more petrol */
    while (end != start || curr_petrol < 0) 
    
        // If current amount of petrol in truck becomes less than 0, then 
        // remove the starting petrol pump from tour 
        while (curr_petrol < 0 && start != end) 
        
            // Remove starting petrol pump. Change start 
            curr_petrol -= arr[start].petrol - arr[start].distance; 
            start = (start + 1) % n; 
  
            // If 0 is being considered as start again, then there is no 
            // possible solution 
            if (start == 0) 
            return -1; 
        
  
        // Add a petrol pump to current tour 
        curr_petrol += arr[end].petrol - arr[end].distance; 
  
        end = (end + 1) % n; 
    
  
    // Return starting point 
    return start; 
  
// Driver code 
int main() 
    petrolPump arr[] = {{6, 4}, {3, 6}, {7, 3}}; 
  
    int n = sizeof(arr)/sizeof(arr[0]); 
    int start = printTour(arr, n); 
  
    (start == -1)? cout<<"No solution": cout<<"Start = "<<start; 
  
    return 0; 
  
  
// This code is contributed by rathbhupendra


C




// C program to find circular tour for a truck
#include <stdio.h>
  
// A petrol pump has petrol and distance to next petrol pump
struct petrolPump
{
  int petrol;
  int distance;
};
  
// The function returns starting point if there is a possible solution,
// otherwise returns -1
int printTour(struct petrolPump arr[], int n)
{
    // Consider first petrol pump as a starting point
    int start = 0;
    int end =  1;
  
    int curr_petrol = arr[start].petrol - arr[start].distance;
  
    /* Run a loop while all petrol pumps are not visited.
      And we have reached first petrol pump again with 0 or more petrol */
    while (end != start || curr_petrol < 0)
    {
        // If current amount of petrol in truck becomes less than 0, then
        // remove the starting petrol pump from tour
        while (curr_petrol < 0 && start != end)
        {
            // Remove starting petrol pump. Change start
            curr_petrol -= arr[start].petrol - arr[start].distance;
            start = (start + 1)%n;
  
            // If 0 is being considered as start again, then there is no
            // possible solution
            if (start == 0)
               return -1;
        }
  
        // Add a petrol pump to current tour
        curr_petrol += arr[end].petrol - arr[end].distance;
  
        end = (end + 1)%n;
    }
  
    // Return starting point
    return start;
}
  
// Driver program to test above functions
int main()
{
    struct petrolPump arr[] = {{6, 4}, {3, 6}, {7, 3}};
  
    int n = sizeof(arr)/sizeof(arr[0]);
    int start = printTour(arr, n);
  
    (start == -1)? printf("No solution"): printf("Start = %d", start);
  
    return 0;
}


Java




//Java program to find circular tour for a truck
  
public class Petrol 
{
    // A petrol pump has petrol and distance to next petrol pump
    static class petrolPump
    {
        int petrol;
        int distance;
          
        // constructor
        public petrolPump(int petrol, int distance) 
        {
            this.petrol = petrol;
            this.distance = distance;
        }
    }
      
    // The function returns starting point if there is a possible solution,
    // otherwise returns -1
    static int printTour(petrolPump arr[], int n)
    {  
        int start = 0;
        int end = 1;
        int curr_petrol = arr[start].petrol - arr[start].distance;
          
        // If current amount of petrol in truck becomes less than 0, then
        // remove the starting petrol pump from tour
        while(end != start || curr_petrol < 0)
        {
              
            // If current amount of petrol in truck becomes less than 0, then
            // remove the starting petrol pump from tour
            while(curr_petrol < 0 && start != end)
            {
                // Remove starting petrol pump. Change start
                curr_petrol -= arr[start].petrol - arr[start].distance;
                start = (start + 1) % n;
                  
                // If 0 is being considered as start again, then there is no
                // possible solution
                if(start == 0)
                    return -1;
            }
            // Add a petrol pump to current tour
            curr_petrol += arr[end].petrol - arr[end].distance;
              
            end = (end + 1)%n;
        }
          
        // Return starting point
        return start;
    }
      
    // Driver program to test above functions
    public static void main(String[] args) 
    {
          
        petrolPump[] arr = {new petrolPump(6, 4),
                            new petrolPump(3, 6),
                            new petrolPump(7, 3)};
          
        int start = printTour(arr, arr.length);
          
        System.out.println(start == -1 ? "No Solution" : "Start = " + start); 
  
    }
  
}
//This code is contributed by Sumit Ghosh


Python




# Python program to find circular tour for a truck 
# In this approach we will start the tour from the first petrol pump
# then while moving to the next pumps in the loop we will store the cumulative
# information that whether we have a deficit of petrol at the current pump or not
# If there is a deficit then we will add it to the deficit value calculated 
# till the previous petrol pump and then update the starting point to the next pump
# and reset the petrol available in the truck as 0
  
# This function return starting point if there is a possible
# solution otherwise returns -1 
def printTour(arr,n):
      
    # Consider first petrol pump as starting point
    start = 0 
    # These two variable will keep tracking if there is 
    # surplus(s) or deficit(d) of petrol in the truck
    s = 0          # petrol available the truck till now
    d = 0        # deficit of petrol till visiting this petrol pump
      
    # Start from the first petrol pump and complete one loop 
    # of visiting all the petrol pumps and keep updating s and d at each pump
    for i in range(n):
      s += arr[i][0] - arr[i][1]
      if s < 0:            # the truck has a deficit of petrol
        start = i+1        # change the starting point
        d += s            # storing the deficit of petrol till current petrol pump
        s = 0            # starting again from new station
      
    # when we reach first petrol pump again and sum of the petrol available at the truck
    # and the petrol deficit till now is 0 or more petrol then return the starting point 
    # else return -1
    return start if (s+d)>=0 else -1
    
    
# Driver program to test above function
arr = [[6,4], [3,6], [7,3]]
start = printTour(arr,3)
if start == -1:
  print("No Solution Possible !!!")
else:
  print("start = {}".format(start))
  
# This code is contributed by Antara Das(anny)


C#




// C# program to find circular 
// tour for a truck 
using System;
  
class GFG
{
    // A petrol pump has petrol and 
    // distance to next petrol pump 
    public class petrolPump
    {
        public int petrol;
        public int distance;
  
        // constructor 
        public petrolPump(int petrol, 
                          int distance)
        {
            this.petrol = petrol;
            this.distance = distance;
        }
    }
  
    // The function returns starting point 
    // if there is a possible solution, 
    // otherwise returns -1 
    public static int printTour(petrolPump[] arr, 
                                int n)
    {
        int start = 0;
        int end = 1;
        int curr_petrol = arr[start].petrol - 
                          arr[start].distance;
  
        // If current amount of petrol in  
        // truck becomes less than 0, then 
        // remove the starting petrol pump from tour 
        while (end != start || curr_petrol < 0)
        {
  
            // If current amount of petrol in
            // truck becomes less than 0, then 
            // remove the starting petrol pump from tour 
            while (curr_petrol < 0 && start != end)
            {
                // Remove starting petrol pump.
                // Change start 
                curr_petrol -= arr[start].petrol - 
                               arr[start].distance;
                start = (start + 1) % n;
  
                // If 0 is being considered as 
                // start again, then there is no 
                // possible solution 
                if (start == 0)
                {
                    return -1;
                }
            }
              
            // Add a petrol pump to current tour 
            curr_petrol += arr[end].petrol - 
                           arr[end].distance;
  
            end = (end + 1) % n;
        }
  
        // Return starting point 
        return start;
    }
  
    // Driver Code
    public static void Main(string[] args)
    {
        petrolPump[] arr = new petrolPump[]
        {
            new petrolPump(6, 4),
            new petrolPump(3, 6),
            new petrolPump(7, 3)
        };
  
        int start = printTour(arr, arr.Length);
  
        Console.WriteLine(start == -1 ? "No Solution"
                                   "Start = " + start);
    }
}
  
// This code is contributed by Shrikant13


Javascript




<script>
    // JavaScript program to find circular tour for a truck
  
    // A petrol pump has petrol and distance to next petrol pump
    class petrolPump {
        constructor(petrol, distance) {
            this.petrol = petrol;
            this.distance = distance;
        }
    };
  
    // The function returns starting point if there is a possible solution,
    // otherwise returns -1
    const printTour = (arr, n) => {
        // Consider first petrol pump as a starting point
        let start = 0;
        let end = 1;
  
        let curr_petrol = arr[start].petrol - arr[start].distance;
  
        /* Run a loop while all petrol pumps are not visited.
        And we have reached first petrol pump again with 0 or more petrol */
        while (end != start || curr_petrol < 0) {
            // If current amount of petrol in truck becomes less than 0, then
            // remove the starting petrol pump from tour
            while (curr_petrol < 0 && start != end) {
                // Remove starting petrol pump. Change start
                curr_petrol -= arr[start].petrol - arr[start].distance;
                start = (start + 1) % n;
  
                // If 0 is being considered as start again, then there is no
                // possible solution
                if (start == 0)
                    return -1;
            }
  
            // Add a petrol pump to current tour
            curr_petrol += arr[end].petrol - arr[end].distance;
  
            end = (end + 1) % n;
        }
  
        // Return starting point
        return start;
    }
  
    // Driver code
  
    let arr = [new petrolPump(6, 4), new petrolPump(3, 6), new petrolPump(7, 3)];
    let n = arr.length;
    let start = printTour(arr, n);
  
    (start == -1) ? document.write("No solution") : document.write(`Start = ${start}`);
  
// This code is contributed by rakeshsahni
  
</script>


Output

Start = 2

Time Complexity: O(N)
Auxiliary Space: O(1)

First Circular Tour by checking only possible valid Starting Positions:

Another efficient solution can be to find out the first petrol pump where the amount of petrol is greater than or equal to the distance to be covered to reach the next petrol pump. 

Mark that petrol pump as start and check whether we can finish the journey towards the end point. 

  • If in the middle, at any petrol pump, the amount of petrol is less than the distance to be covered to reach the next petrol pump, then we can say we cannot complete the circular tour from start
  • Find the next start petrol pump where the amount of petrol is greater than or equal to the distance to be covered and we mark it as start. Continue this process till all points are visited or a starting point is found.

Let us discuss why we need not look at any petrol pump in between the initial petrol pump marked as start and the new start.

Let us consider there was a petrol pump at kth position between the old start and new start. This petrol pump will break the range into two parts. The case is that 

  • both the parts can have negative sum, 
  • the starting partition can have a negative sum or 
  • the later half has a negative sum. 

In the first and the last case we will not be able to reach the new start point. 

And for the second case though we will be able to reach the new start but will not be able to complete the tour because we will not be able to cover some part in between 0 to the kth position. [As we already found that we could not reach to start from 0 and also we are not able to reach k from start. So the tour cannot be completed] 

Follow the steps mentioned below to implement the idea:

  • Find the first possible petrol pump where the amount of petrol is greater than the distance to the next petrol pump.
  • Traverse from i = start to N:
    • If the amount of petrol becomes inefficient (i.e., negative) we need to update the new start point.
      • Traverse from i+1 to N and find the point where petrol is greater than the distance to the next petrol pump.
    • Start from the new start point and continue the above procedure.
  • Start from 0 to the found start point. If the sum of the petrol is non-negative then the start point is feasible otherwise not.

Below is the implementation of the above approach:  

C++




// C++ program to find circular tour for a truck
#include <bits/stdc++.h>
using namespace std;
  
// A petrol pump has petrol and distance to next petrol pump
class petrolPump {
public:
    int petrol;
    int distance;
};
  
// The function returns starting point if there is a
// possible solution, otherwise returns -1
int printTour(petrolPump arr[], int n)
{
    int start;
  
    for (int i = 0; i < n; i++) {
        // Identify the first petrol pump from where we
        // might get a full circular tour
        if (arr[i].petrol >= arr[i].distance) {
            start = i;
            break;
        }
    }
  
    // To store the excess petrol
    int curr_petrol = 0;
  
    int i;
  
    for (i = start; i < n;) {
  
        curr_petrol += (arr[i].petrol - arr[i].distance);
  
        // If at any point remaining petrol is less than 0,
        // it means that we cannot start our journey from
        // current start
        if (curr_petrol < 0) {
  
            // We move to the next petrol pump
            i++;
  
            // We try to identify the next petrol pump from
            // where we might get a full circular tour
            for (; i < n; i++) {
                if (arr[i].petrol >= arr[i].distance) {
  
                    start = i;
  
                    // Reset rem_petrol
                    curr_petrol = 0;
  
                    break;
                }
            }
        }
  
        else {
            // Move to the next petrolpump if curr_petrol is
            // >= 0
            i++;
        }
    }
  
    // If remaining petrol is less than 0 while we reach the
    // first petrol pump, it means no circular tour is
    // possible
    if (curr_petrol < 0) {
        return -1;
    }
  
    for (int j = 0; j < start; j++) {
  
        curr_petrol += (arr[j].petrol - arr[j].distance);
  
        // If remaining petrol is less than 0 at any point
        // before we reach initial start, it means no
        // circular tour is possible
        if (curr_petrol < 0) {
            return -1;
        }
    }
  
    // If we have successfully reached intial_start, it
    // means can get a circular tour from final_start, hence
    // return it
    return start;
}
// Driver code
int main()
{
    petrolPump arr[] = { { 6, 4 }, { 3, 6 }, { 7, 3 } };
  
    int n = sizeof(arr) / sizeof(arr[0]);
    int start = printTour(arr, n);
  
    (start == -1) ? cout << "No solution"
                  : cout << "Start = " << start;
  
    return 0;
}
  
// This code is contributed by supratik_mitra


C




// C program to find circular tour for a truck
#include <stdio.h>
  
// A petrol pump has petrol and distance to next petrol pump
struct petrolPump {
    int petrol;
    int distance;
};
  
// The function returns starting point if there is a
// possible solution, otherwise returns -1
int printTour(struct petrolPump arr[], int n)
{
    int start;
  
    for (int i = 0; i < n; i++) {
        // Identify the first petrol pump from where we
        // might get a full circular tour
        if (arr[i].petrol >= arr[i].distance) {
            start = i;
            break;
        }
    }
  
    // To store the excess petrol
    int curr_petrol = 0;
  
    int i;
  
    for (i = start; i < n;) {
  
        curr_petrol += (arr[i].petrol - arr[i].distance);
  
        // If at any point remaining petrol is less than 0,
        // it means that we cannot start our journey from
        // current start
        if (curr_petrol < 0) {
  
            // We move to the next petrol pump
            i++;
  
            // We try to identify the next petrol pump from
            // where we might get a full circular tour
            for (; i < n; i++) {
                if (arr[i].petrol >= arr[i].distance) {
  
                    start = i;
  
                    // Reset rem_petrol
                    curr_petrol = 0;
  
                    break;
                }
            }
        }
  
        else
        {
            
            // Move to the next petrolpump if curr_petrol is
            // >= 0
            i++;
        }
    }
  
    // If remaining petrol is less than 0 while we reach the
    // first petrol pump, it means no circular tour is
    // possible
    if (curr_petrol < 0) {
        return -1;
    }
  
    for (int j = 0; j < start; j++) {
  
        curr_petrol += (arr[j].petrol - arr[j].distance);
  
        // If remaining petrol is less than 0 at any point
        // before we reach initial start, it means no
        // circular tour is possible
        if (curr_petrol < 0) {
            return -1;
        }
    }
  
    // If we have successfully reached intial_start, it
    // means can get a circular tour from final_start, hence
    // return it
    return start;
}
  
// Driver code
int main()
{
    struct petrolPump arr[]
        = { { 6, 4 }, { 3, 6 }, { 7, 3 } };
  
    int n = sizeof(arr) / sizeof(arr[0]);
    int start = printTour(arr, n);
  
    (start == -1) ? printf("No solution")
                  : printf("Start = %d", start);
  
    return 0;
}
  
// This code is contributed by jainlovely450


Java




// Java program to find circular tour for a truck
public class Circular
{
    
    // A petrol pump has petrol and distance to next petrol
    // pump
    static class petrolPump {
        int petrol;
        int distance;
  
        public petrolPump(int petrol, int distance)
        {
            this.petrol = petrol;
            this.distance = distance;
        }
    }
  
    // The function returns starting point if there is a
    // possible solution, otherwise returns -1
    static int printTour(petrolPump arr[], int n)
    {
        int start = 0;
  
        for (int i = 0; i < n; i++) {
            // Identify the first petrol pump from where we
            // might get a full circular tour
            if (arr[i].petrol >= arr[i].distance) {
                start = i;
                break;
            }
        }
  
        // To store the excess petrol
        int curr_petrol = 0;
        int i;
        for (i = start; i < n;) {
  
            curr_petrol
                += (arr[i].petrol - arr[i].distance);
  
            // If at any point remaining petrol is less than
            // 0, it means that we cannot start our journey
            // from current start
            if (curr_petrol < 0) {
                // We move to the next petrol pump
                i++;
  
                // We try to identify the next petrol pump
                // from where we might get a full circular
                // tour
                for (; i < n; i++) {
                    if (arr[i].petrol >= arr[i].distance) {
  
                        start = i;
  
                        // Reset rem_petrol
                        curr_petrol = 0;
  
                        break;
                    }
                }
            }
  
            else {
                // Move to the next petrolpump if
                // curr_petrol is
                // >= 0
                i++;
            }
        }
  
        // If remaining petrol is less than 0 while we reach
        // the first petrol pump, it means no circular tour
        // is possible
        if (curr_petrol < 0) {
            return -1;
        }
  
        for (int j = 0; j < start; j++) {
  
            curr_petrol
                += (arr[j].petrol - arr[j].distance);
  
            // If remaining petrol is less than 0 at any
            // point before we reach initial start, it means
            // no circular tour is possible
            if (curr_petrol < 0) {
                return -1;
            }
        }
  
        // If we have successfully reached intial_start, it
        // means can get a circular tour from final_start,
        // hence return it
        return start;
    }
  
    // Driver code
    public static void main(String[] args)
    {
  
        petrolPump arr[]
            = { new petrolPump(6, 4), new petrolPump(3, 6),
                new petrolPump(7, 3) };
  
        int n = arr.length;
        int start = printTour(arr, n);
  
        System.out.println(start == -1
                               ? "No solution"
                               : "Start = " + start);
    }
}
  
// This code is contributed by jainlovely450


Python3




# Python program to find circular tour for a truck
  
# A petrol pump has petrol and distance to next petrol pump
class petrolPump:
    def __init__(self, petrol, distance):
        self.petrol = petrol
        self.distance = distance
  
# The function returns starting point if there is a
# possible solution, otherwise returns -1
def printTour(arr, n):
    start = 0
  
    for i in range(n):
        
        # Identify the first petrol pump from where we
        # might get a full circular tour
        if arr[i].petrol >= arr[i].distance:
            start = i
            break
              
    # To store the excess petrol
    curr_petrol = 0
    for i in range(start, n):
        curr_petrol += (arr[i].petrol - arr[i].distance)
  
        # If at any point remaining petrol is less than 0,
        # it means that we cannot start our journey from
        # current start
        if(curr_petrol < 0):
  
            # We move to the next petrol pump
            i += 1
  
            # We try to identify the next petrol pump from
            # where we might get a full circular tour
            while(i < n):
                if(arr[i].petrol >= arr[i].distance):
                    start = i
  
                    # Reset rem_petrol
                    curr_petrol = 0
                    break
                i += 1
  
        else:
            # Move to the next petrolpump if curr_petrol is
            # >= 0
            i += 1
  
    ''' If remaining petrol is less than 0 while we reach the
     first petrol pump, it means no circular tour is
     possible '''
    if(curr_petrol < 0):
        return -1
  
    for i in range(start):
        curr_petrol += (arr[i].petrol - arr[i].distance)
  
        ''' If remaining petrol is less than 0 at any point
         before we reach initial start, it means no
         circular tour is possible '''
        if(curr_petrol < 0):
            return -1
  
    ''' If we have successfully reached intial_start, it
     means can get a circular tour from final_start, hence
     return it '''
    return start
  
# Driver code
arr = [petrolPump(6, 4), petrolPump(3, 6), petrolPump(7, 3)]
start = printTour(arr, len(arr))
if start == -1:
    print("No solution")
else:
    print("Start = {}".format(start))
  
# This code is contributed by jainlovely450


C#




using System;
// C# program to find circular tour for a truck
public class Circular {
  
  // A petrol pump has petrol and distance to next petrol
  // pump
  public class petrolPump {
    public int petrol;
    public int distance;
  
    public petrolPump(int petrol, int distance) {
      this.petrol = petrol;
      this.distance = distance;
    }
  }
  
  // The function returns starting point if there is a
  // possible solution, otherwise returns -1
  static int printTour(petrolPump []arr, int n) {
    int start = 0;
    int i;
    for ( i = 0; i < n; i++)
    {
        
      // Identify the first petrol pump from where we
      // might get a full circular tour
      if (arr[i].petrol >= arr[i].distance) {
        start = i;
        break;
      }
    }
  
    // To store the excess petrol
    int curr_petrol = 0;
  
    for (i = start; i < n;) {
  
      curr_petrol += (arr[i].petrol - arr[i].distance);
  
      // If at any point remaining petrol is less than
      // 0, it means that we cannot start our journey
      // from current start
      if (curr_petrol < 0) {
        // We move to the next petrol pump
        i++;
  
        // We try to identify the next petrol pump
        // from where we might get a full circular
        // tour
        for (; i < n; i++) {
          if (arr[i].petrol >= arr[i].distance) {
  
            start = i;
  
            // Reset rem_petrol
            curr_petrol = 0;
  
            break;
          }
        }
      }
  
      else {
        // Move to the next petrolpump if
        // curr_petrol is
        // >= 0
        i++;
      }
    }
  
    // If remaining petrol is less than 0 while we reach
    // the first petrol pump, it means no circular tour
    // is possible
    if (curr_petrol < 0) {
      return -1;
    }
  
    for (int j = 0; j < start; j++) {
  
      curr_petrol += (arr[j].petrol - arr[j].distance);
  
      // If remaining petrol is less than 0 at any
      // point before we reach initial start, it means
      // no circular tour is possible
      if (curr_petrol < 0) {
        return -1;
      }
    }
  
    // If we have successfully reached intial_start, it
    // means can get a circular tour from final_start,
    // hence return it
    return start;
  }
  
  // Driver code
  public static void Main(String[] args) {
  
    petrolPump []arr = { new petrolPump(6, 4), 
                        new petrolPump(3, 6), 
                        new petrolPump(7, 3) };
  
    int n = arr.Length;
    int start = printTour(arr, n);
  
    Console.WriteLine(start == -1 ? "No solution" : "Start = " + start);
  }
}
  
// This code is contributed by umadevi9616


Javascript




<script>
    // JavaScript program to find circular tour for a truck
  
    // A petrol pump has petrol and distance to next petrol pump
    class petrolPump {
        constructor(petrol, distance) {
            this.petrol = petrol;
            this.distance = distance;
        }
    };
  
    // The function returns starting point if there is a
    // possible solution, otherwise returns -1
    const printTour = (arr, n) => {
        let start;
  
        for (let i = 0; i < n; i++)
        {
          
            // Identify the first petrol pump from where we
            // might get a full circular tour
            if (arr[i].petrol >= arr[i].distance) {
                start = i;
                break;
            }
        }
  
        // To store the excess petrol
        let curr_petrol = 0;
        let i;
  
        for (i = start; i < n;)
        {
  
            curr_petrol += (arr[i].petrol - arr[i].distance);
  
            // If at any point remaining petrol is less than 0,
            // it means that we cannot start our journey from
            // current start
            if (curr_petrol < 0) {
  
                // We move to the next petrol pump
                i++;
  
                // We try to identify the next petrol pump from
                // where we might get a full circular tour
                for (; i < n; i++) {
                    if (arr[i].petrol >= arr[i].distance) {
  
                        start = i;
  
                        // Reset rem_petrol
                        curr_petrol = 0;
  
                        break;
                    }
                }
            }
  
            else {
                // Move to the next petrolpump if curr_petrol is
                // >= 0
                i++;
            }
        }
  
        // If remaining petrol is less than 0 while we reach the
        // first petrol pump, it means no circular tour is
        // possible
        if (curr_petrol < 0) {
            return -1;
        }
  
        for (let j = 0; j < start; j++) {
  
            curr_petrol += (arr[j].petrol - arr[j].distance);
  
            // If remaining petrol is less than 0 at any point
            // before we reach initial start, it means no
            // circular tour is possible
            if (curr_petrol < 0) {
                return -1;
            }
        }
  
        // If we have successfully reached intial_start, it
        // means can get a circular tour from final_start, hence
        // return it
        return start;
    }
      
    // Driver code
    let arr = [new petrolPump(6, 4), new petrolPump(3, 6), new petrolPump(7, 3)];
    let n = arr.length;
  
    let start = printTour(arr, n);
  
    (start == -1) ? document.write("No solution") : document.write(`Start = ${start}`);
  
    // This code is contributed by rakeshsahni
</script>


Output

Start = 2

Time Complexity: O(N)
Auxiliary Space: O(1)

First Circular Tour by using Single Loop:

The idea is similar to the above approach. 

Here we will use another variable to substitute the extra loop from start till the latest found start point. The variable will store the sum of utilized petrol from 0 till the latest start petrol pump.

Below is the implementation of the above approach: 

C++




// C++ program to find circular tour for a truck
#include <bits/stdc++.h>
using namespace std;
  
// A petrol pump has petrol and distance to next petrol pump
class petrolPump {
public:
    int petrol;
    int distance;
};
  
// The function returns starting point if there is a
// possible solution, otherwise returns -1
int printTour(petrolPump p[], int n)
{
    // deficit is used to store the value of the capacity as
    // soon as the value of capacity becomes negative so as
    // not to traverse the array twice in order to get the
    // solution
    int start = 0, deficit = 0;
    int capacity = 0;
    for (int i = 0; i < n; i++) {
        capacity += p[i].petrol - p[i].distance;
        if (capacity < 0) {
            // If this particular step is not done then the
            // between steps would be redundant
            start = i + 1;
            deficit += capacity;
            capacity = 0;
        }
    }
    return (capacity + deficit >= 0) ? start : -1;
}
// Driver code
int main()
{
    petrolPump arr[] = { { 6, 4 }, { 3, 6 }, { 7, 3 } };
  
    int n = sizeof(arr) / sizeof(arr[0]);
    int start = printTour(arr, n);
  
    (start == -1) ? cout << "No solution"
                  : cout << "Start = " << start;
  
    return 0;
}
  
// This code is contributed by aditya kumar


Java




// Java program to find circular tour for a truck
import java.util.*;
class GFG {
  
  // A petrol pump has petrol and distance to next petrol pump
  static class petrolPump {
  
    int petrol;
    int distance;
  
    petrolPump(int a, int b) {
      this.petrol = a;
      this.distance = b;
    }
  };
  
  // The function returns starting point if there is a
  // possible solution, otherwise returns -1
  static int printTour(petrolPump p[], int n)
  {
  
    // deficit is used to store the value of the capacity as
    // soon as the value of capacity becomes negative so as
    // not to traverse the array twice in order to get the
    // solution
    int start = 0, deficit = 0;
    int capacity = 0;
    for (int i = 0; i < n; i++) {
      capacity += p[i].petrol - p[i].distance;
      if (capacity < 0) {
        // If this particular step is not done then the
        // between steps would be redundant
        start = i + 1;
        deficit += capacity;
        capacity = 0;
      }
    }
    return (capacity + deficit >= 0) ? start : -1;
  }
  
  // Driver code
  public static void main(String[] args) {
    petrolPump arr[] = { new petrolPump(6, 4), 
                        new petrolPump(3, 6), 
                        new petrolPump(7, 3) };
  
    int n = arr.length;
    int start = printTour(arr, n);
  
    if (start == -1)
      System.out.print("No solution");
    else
      System.out.print("Start = " + start);
  
  }
}
  
// This code is contributed by umadevi9616


Python3




# Python program to find circular tour for a truck
  
# A petrol pump has petrol and distance to next petrol pump
class petrolPump:
    def __init__(self,a, b):
        self.petrol = a;
        self.distance = b;
      
# The function returns starting point if there is a
# possible solution, otherwise returns -1
def printTour( p, n):
  
    # deficit is used to store the value of the capacity as
    # soon as the value of capacity becomes negative so as
    # not to traverse the array twice in order to get the
    # solution
    start = 0;
    deficit = 0;
    capacity = 0;
    for i in range(n):
        capacity += p[i].petrol - p[i].distance;
        if (capacity < 0):
            # If this particular step is not done then the
            # between steps would be redundant
            start = i + 1;
            deficit += capacity;
            capacity = 0;
          
    if(capacity + deficit >= 0):
        return start;
    else:
        return -1;
  
# Driver code
if __name__ == '__main__':
    arr = [petrolPump(6, 4),petrolPump(3, 6),petrolPump(7, 3)] ;
  
    n = len(arr);
    start = printTour(arr, n);
  
    if (start == -1):
        print("No solution");
    else:
        print("Start = " , start);
  
  
# This code is contributed by Rajput-Ji 


C#




// C# program to find circular tour for a truck
using System;
  
public class GFG {
  
    // A petrol pump has petrol and distance to next petrol pump
    public class petrolPump {
  
        public int petrol;
        public int distance;
  
        public petrolPump(int a, int b) {
            this.petrol = a;
            this.distance = b;
        }
    };
  
    // The function returns starting point if there is a
    // possible solution, otherwise returns -1
    static int printTour(petrolPump []p, int n) {
  
        // deficit is used to store the value of the capacity as
        // soon as the value of capacity becomes negative so as
        // not to traverse the array twice in order to get the
        // solution
        int start = 0, deficit = 0;
        int capacity = 0;
        for (int i = 0; i < n; i++) {
            capacity += p[i].petrol - p[i].distance;
            if (capacity < 0) 
            {
                
                // If this particular step is not done then the
                // between steps would be redundant
                start = i + 1;
                deficit += capacity;
                capacity = 0;
            }
        }
        return (capacity + deficit >= 0) ? start : -1;
    }
  
    // Driver code
    public static void Main(String[] args)
    {
        petrolPump []arr = { new petrolPump(6, 4), 
                            new petrolPump(3, 6), 
                            new petrolPump(7, 3) };
  
        int n = arr.Length;
        int start = printTour(arr, n);
  
        if (start == -1)
            Console.Write("No solution");
        else
            Console.Write("Start = " + start);
  
    }
}
  
// This code is contributed by Rajput-Ji


Javascript




<script>
// javascript program to find circular tour for a truck
  
    // A petrol pump has petrol and distance to next petrol pump
     class petrolPump {
  
        constructor(a , b) {
            this.petrol = a;
            this.distance = b;
        }
}
  
    // The function returns starting point if there is a
    // possible solution, otherwise returns -1
    function printTour( p , n) {
  
        // deficit is used to store the value of the capacity as
        // soon as the value of capacity becomes negative so as
        // not to traverse the array twice in order to get the
        // solution
        var start = 0, deficit = 0;
        var capacity = 0;
        for (i = 0; i < n; i++) {
            capacity += p[i].petrol - p[i].distance;
            if (capacity < 0) {
                // If this particular step is not done then the
                // between steps would be redundant
                start = i + 1;
                deficit += capacity;
                capacity = 0;
            }
        }
        return (capacity + deficit >= 0) ? start : -1;
    }
  
    // Driver code
        var arr = [ new petrolPump(6, 4), new petrolPump(3, 6), new petrolPump(7, 3) ];
        var n = arr.length;
        var start = printTour(arr, n);
        if (start == -1)
            document.write("No solution");
        else
            document.write("Start = " + start);
  
// This code is contributed by Rajput-Ji 
</script>


Output

Start = 2

Time Complexity: O(N)
Auxiliary Space: O(1) 

First Circular Tour using dynamic programming

In this approach first, we will storing the difference between petrol and distance then prefix array will store the difference of petrol and distance till the i’th position and suffix array will do the same from end. The idea behind this approach is we are checking if the i’th position is suitable candidate for a starting point or not. For checking this we are storing the capacity from front and from end.

Below is the implementation of above approach:

C++




// C++ program to find circular tour for a truck
#include <bits/stdc++.h>
using namespace std;
  
// A petrol pump has petrol and distance to next petrol pump
class petrolPump {
public:
    int petrol;
    int distance;
};
  
// The function returns starting point if there is a
// possible solution, otherwise returns -1
int printTour(petrolPump p[], int n)
{
    // storing the difference between petrol and distance
       vector<int> v;
       for(int i=0;i<n;i++)
       {
           v.push_back(p[i].petrol-p[i].distance);
       }
         
       // pref array will store the difference of petrol and distance 
       // till the i'th position
         
       vector<int> pref(n);
       pref[0]=v[0];
       for(int i=0;i<n;i++)
       {
           pref[i]=pref[i-1]+v[i];
       }
         
       // suff array will store the difference of petrol and distance 
       // till the i'th position from the end
         
       vector<int> suff(n);
       suff[n-1]=v[n-1];
       for(int i=n-2;i>=0;i--)
       {
           suff[i]=suff[i+1]+v[i];
       }
         
      int flag=0;
      int ans=-1;
         
       for(int i=0;i<n;i++)
       {
           // when the pref array will become 0 first time then we will
           // store the next index of it
           // if the pref of i'th pos minus pref of last index where pref 
           // array became negative is less than 0
           // then we will update the ans
             
           if((ans==-1 && pref[i]<0) || (ans!=-1 && pref[i]-pref[ans-1]<0))
           {
                ans=i+1;
           }
       }
         
       // no index in pref array is less than 0
       if(ans==-1)
       {
           return 0;
       }
       // if at i'th position pref array become 0
       else if(ans<n)
       {
           if(pref[ans-1]+suff[ans]>=0)
           {
               return ans;
           }
       }
       // if at n'th position pref array become 0
       else if(ans==n)
       {
           if(suff[ans-1]+pref[ans-2]>=0)
           {
               return n-1;
           }
       }
         
       // if no index is picked as starting point
       return -1;
}
  
int main() 
{
    petrolPump arr[] = { { 6, 4 }, { 3, 6 }, { 7, 3 } };
   
    int n = sizeof(arr) / sizeof(arr[0]);
    int start = printTour(arr, n);
   
    (start == -1) ? cout << "No solution"
                  : cout << "Start = " << start;
   
    return 0;
}
  
// this code is contributed by Nishant Raj


Java




// Java program to find circular tour for a truck
import java.util.*;
  
class GFG {
    public static void main(String[] args)
    {
        petrolPump[] arr
            = { new petrolPump(6, 4), new petrolPump(3, 6),
                new petrolPump(7, 3) };
        int n = arr.length;
        int start = printTour(arr, n);
        if (start == -1)
            System.out.println("No solution");
        else
            System.out.println("Start = " + start);
    }
  
    // A petrol pump has petrol and distance to next petrol
    // pump
    static class petrolPump {
        public int petrol, distance;
        public petrolPump(int petrol, int distance)
        {
            this.petrol = petrol;
            this.distance = distance;
        }
    }
  
    // The function returns starting point if there is a
    // possible solution, otherwise returns -1
    static int printTour(petrolPump[] p, int n)
    {
        // storing the difference between petrol and
        // distance
        List<Integer> v = new ArrayList<Integer>();
        for (int i = 0; i < n; i++) {
            v.add(p[i].petrol - p[i].distance);
        }
  
        // pref array will store the difference of petrol
        // and distance till the i'th position
        int[] pref = new int[n];
        pref[0] = v.get(0);
        for (int i = 1; i < n; i++) {
            pref[i] = pref[i - 1] + v.get(i);
        }
  
        // suff array will store the difference of petrol
        // and distance till the i'th position from the end
        int[] suff = new int[n];
        suff[n - 1] = v.get(n - 1);
        for (int i = n - 2; i >= 0; i--) {
            suff[i] = suff[i + 1] + v.get(i);
        }
  
        int flag = 0;
        int ans = -1;
  
        for (int i = 0; i < n; i++) {
            // when the pref array will become 0 first time
            // then we will
            // store the next index of it
            // if the pref of i'th pos minus pref of last
            // index where pref array became negative is
            // less than 0 then we will update the ans
            if ((ans == -1 && pref[i] < 0)
                || (ans != -1
                    && pref[i] - pref[ans - 1] < 0)) {
                ans = i + 1;
            }
        }
        // no index in pref array is less than 0
        if (ans == -1) {
            return 0;
        }
  
        // if at i'th position pref array become 0
        else if (ans < n) {
            if (pref[ans - 1] + suff[ans] >= 0) {
                return ans;
            }
        }
        // if at n'th position pref array become 0
        else if (ans == n) {
            if (suff[ans - 1] + pref[ans - 2] >= 0) {
                return n - 1;
            }
        }
        // if no index is picked as starting point
        return -1;
    }
}
  
// This code is contributed by Tapesh(tapeshdua420)


Python3




# Python program to find circular tour for a truck
  
# A petrol pump has petrol and distance to next petrol pump
class petrolPump:
    def __init__(self,a, b):
        self.petrol = a;
        self.distance = b;
  
  
# The function returns starting point if there is a
# possible solution, otherwise returns -1
def printTour( p, n):
    # storing the difference between petrol and distance
    v=[];
    for i in range(0,n):
       v.append(p[i].petrol-p[i].distance);
      
      
    # pref array will store the difference of petrol and distance 
    # till the i'th position
      
    pref=[0]*(n);
    pref[0]=v[0];
    for i in range(0,n):
       pref[i]=pref[i-1]+v[i];
      
    # suff array will store the difference of petrol and distance 
    # till the i'th position from the end
      
    suff=[0]*n;
    suff[n-1]=v[n-1];
    for i in range(n-2,-1):
       suff[i]=suff[i+1]+v[i];
      
    flag=0;
    ans=-1;
      
    for i in range(0,n):
       # when the pref array will become 0 first time then we will
       # store the next index of it
       # if the pref of i'th pos minus pref of last index where pref 
       # array became negative is less than 0
       # then we will update the ans
         
       if((ans==-1 and pref[i]<0) or (ans!=-1 and pref[i]-pref[ans-1]<0)):
            ans=i+1;
      
    # no index in pref array is less than 0
    if(ans==-1):
       return 0;
      
    # if at i'th position pref array become 0
    elif(ans<n):
        if(pref[ans-1]+suff[ans]>=0):
            return ans;
         
    # if at n'th position pref array become 0
    elif(ans==n):
       if(suff[ans-1]+pref[ans-2]>=0):
           return n-1;
         
    # if no index is picked as starting point
    return -1;
  
if __name__ == '__main__':
    arr = [petrolPump(6, 4),petrolPump(3, 6),petrolPump(7, 3)] ;
   
    n = len(arr);
    start = printTour(arr, n);
   
    if (start == -1):
        print("No solution");
    else:
        print("Start = " , start);
  
        # This code is contributed by ratiagrawal.


C#




// C# program to find circular tour for a truck
  
using System;
using System.Linq;
using System.Collections.Generic;
  
class GFG 
{
    // A petrol pump has petrol and distance to next petrol pump
    class petrolPump {
        public int petrol, distance;
        public petrolPump(int petrol, int distance)
        {
            this.petrol=petrol;
            this.distance=distance;
        }
    }
      
    // The function returns starting point if there is a
    // possible solution, otherwise returns -1
    static int printTour(petrolPump[] p, int n)
    {
        // storing the difference between petrol and distance
           List<int> v=new List<int>();
           for(int i=0;i<n;i++)
           {
               v.Add(p[i].petrol-p[i].distance);
           }
             
           // pref array will store the difference of petrol and distance 
           // till the i'th position
             
           int[] pref=new int[n];
           pref[0]=v[0];
           for(int i=1;i<n;i++)
           {
               pref[i]=pref[i-1]+v[i];
           }
             
           // suff array will store the difference of petrol and distance 
           // till the i'th position from the end
             
           int[] suff=new int[n];
           suff[n-1]=v[n-1];
           for(int i=n-2;i>=0;i--)
           {
               suff[i]=suff[i+1]+v[i];
           }
             
          int flag=0;
          int ans=-1;
             
           for(int i=0;i<n;i++)
           {
               // when the pref array will become 0 first time then we will
               // store the next index of it
               // if the pref of i'th pos minus pref of last index where pref 
               // array became negative is less than 0
               // then we will update the ans
                 
               if((ans==-1 && pref[i]<0) || (ans!=-1 && pref[i]-pref[ans-1]<0))
               {
                    ans=i+1;
               }
           }
             
           // no index in pref array is less than 0
           if(ans==-1)
           {
               return 0;
           }
           // if at i'th position pref array become 0
           else if(ans<n)
           {
               if(pref[ans-1]+suff[ans]>=0)
               {
                   return ans;
               }
           }
           // if at n'th position pref array become 0
           else if(ans==n)
           {
               if(suff[ans-1]+pref[ans-2]>=0)
               {
                   return n-1;
               }
           }
             
           // if no index is picked as starting point
           return -1;
    }
      
    static public void Main()
    {
          
        petrolPump[] arr = { new petrolPump(6, 4 ), new petrolPump( 3, 6 ), new petrolPump( 7, 3 ) };
;
       
        int n = arr.Length;
        int start = printTour(arr, n);
       
        if (start == -1) 
            Console.Write("No solution");
        else
            Console.Write("Start = " + start);
       
    }
}


Javascript




// Javascript program to find circular tour for a truck
  
// A petrol pump has petrol and distance to next petrol pump
class petrolPump {
    constructor(petrol,distance)
    {
        this.petrol=petrol;
        this.distance=distance;
    }
}
  
// The function returns starting point if there is a
// possible solution, otherwise returns -1
function printTour( p,  n)
{
    // storing the difference between petrol and distance
       let v=[];
       for(let i=0;i<n;i++)
       {
           v.push(p[i].petrol-p[i].distance);
       }
         
       // pref array will store the difference of petrol and distance 
       // till the i'th position
         
       let pref=new Array(n);
       pref[0]=v[0];
       for(let i=1;i<n;i++)
       {
           pref[i]=pref[i-1]+v[i];
             
       }
         
       // suff array will store the difference of petrol and distance 
       // till the i'th position from the end
         
       let suff=new Array(n);
       suff[n-1]=v[n-1];
       for(let i=n-2;i>=0;i--)
       {
           suff[i]=suff[i+1]+v[i];
       }
         
      let flag=0;
      let ans=-1;
         
       for(let i=0;i<n;i++)
       {
           // when the pref array will become 0 first time then we will
           // store the next index of it
           // if the pref of i'th pos minus pref of last index where pref 
           // array became negative is less than 0
           // then we will update the ans
             
           if((ans==-1 && pref[i]<0) || (ans!=-1 && pref[i]-pref[ans-1]<0))
           {
                ans=i+1;
           }
       }
         
       // no index in pref array is less than 0
       if(ans==-1)
       {
           return 0;
       }
       // if at i'th position pref array become 0
       else if(ans<n)
       {
           if(pref[ans-1]+suff[ans]>=0)
           {
               return ans;
           }
       }
       // if at n'th position pref array become 0
       else if(ans==n)
       {
           if(suff[ans-1]+pref[ans-2]>=0)
           {
               return n-1;
           }
       }
         
       // if no index is picked as starting point
       return -1;
}
  
let arr = [ new petrolPump(6, 4 ), new petrolPump( 3, 6 ), new petrolPump( 7, 3 ) ];
  
let n = arr.length;
let start = printTour(arr, n);
  
(start == -1) ? document.write("No solution")
              : document.write("Start = " + start);


Output

Start = 2

Time Complexity: O(N)
Auxiliary Space: O(1) 



Similar Reads

Number of circular tours that visit all petrol pumps
Suppose there is a circular road. There are n petrol pumps on that road. You are given two array, a[] and b[], and a positive integer c. where a[i] denote the amount of fuel we get on reaching ith petrol pump, b[i] denote the amount of fuel used to travel from ith petrol pump to (i + 1)th petrol pump and c denotes the capacity of the tank in the ve
10 min read
Minimum steps to come back to starting point in a circular tour
Consider circular track with n points marked as 1, 2, ...n. A person is initially placed on point k. The person moves m &gt; 0, slot forward (in circular way) in each step. Find the minimum number of steps required so that the person reaches initial point k. Examples: Input : n = 9, k = 2, m = 6 Output : 3 Explanation : Sequence of moves is 2 =&gt;
7 min read
Find maximum and minimum cost to reach the last petrol pump
Given two integers N (N ≥ 1) and K (K ≥ 1), where N denotes the number of petrol pumps from 1 to N and K denotes the maximum capacity of a car to hold petrol in liters, then the task is to output the maximum and minimum cost for reaching to the last petrol pump from the first petrol pump, and the petrol tank should be completely empty at the last p
8 min read
Check which player visits more number of Nodes
Given a tree with N nodes. Two players A and B start from node 1 and node N respectively. A can visit all the adjacent nodes to the nodes already visited by A but can not visit any nodes which is already visited by B and similarly for B also.The player who visits more cities win. Find the player who wins if they both play optimally. Examples: Input
10 min read
Check if a sequence of path visits any coordinate twice or not
Given string str of length N only consisting of characters 'N', 'S', 'E', or 'W', each representing moving one unit North, South, East, or West, respectively. A man starts at the origin (0, 0) on a 2D plane and walks according to the directions in the string. The task is to check whether the man crosses any coordinate in his walk, which he has alre
7 min read
Print all Knight's tour possible from a starting point on NxN chessboard
Given a N x N chessboard with a Knight initially standing on the Xth row and Yth column, the task is to print all possible paths such that the knight must visit each square exactly once. Example: Input: N = 5, X = 1, Y = 1Output: 1 6 15 10 21 14 9 20 5 16 19 2 7 22 11 8 13 24 17 4 25 18 3 12 23 1 6 11 18 21 12 17 20 5 10 7 2 15 22 19 16 13 24 9 4 2
15+ min read
Euler Tour of Tree
A Tree is a generalization of connected graph where it has N nodes that will have exactly N-1 edges, i.e one edge between every pair of vertices. Find the Euler tour of tree represented by adjacency list. Examples: Input : Output : 1 2 3 2 4 2 1 Input : Output : 1 5 4 2 4 3 4 5 1 Euler tour is defined as a way of traversing tree such that each vert
6 min read
Euler Tour | Subtree Sum using Segment Tree
Euler tour tree (ETT) is a method for representing a rooted tree as a number sequence. When traversing the tree using Depth for search(DFS), insert each node in a vector twice, once while entered it and next after visiting all its children. This method is very useful for solving subtree problems and one such problem is Subtree Sum. Prerequisite : S
15+ min read
Euler tour of Binary Tree
Given a binary tree where each node can have at most two child nodes, the task is to find the Euler tour of the binary tree. Euler tour is represented by a pointer to the topmost node in the tree. If the tree is empty, then value of root is NULL. Examples: Input : Output: 1 5 4 2 4 3 4 5 1 Approach: First, start with root node 1, Euler[0]=1 Go to l
7 min read
Total nodes traversed in Euler Tour Tree
Euler tour of tree has been already discussed which flattens the hierarchical structure of tree into array which contains exactly 2*N-1 values. In this post, the task is to prove that the degree of Euler Tour Tree is 2 times the number of nodes minus one. Here degree means the total number of nodes get traversed in Euler Tour. Examples: Input: Outp
7 min read