Open In App

Binomial Heap

Last Updated : 08 Dec, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

The main application of Binary Heap is as implement a priority queue. Binomial Heap is an extension of Binary Heap that provides faster union or merge operation with other operations provided by Binary Heap. 

A Binomial Heap is a collection of Binomial Trees 
What is a Binomial Tree? 

A Binomial Tree of order 0 has 1 node. A Binomial Tree of order k can be constructed by taking two binomial trees of order k-1 and making one the leftmost child of the other. 

A Binomial Tree of order k the has following properties. 

  • It has exactly 2k nodes. 
  • It has depth as k. 
  • There are exactly kaiCi nodes at depth i for i = 0, 1, . . . , k. 
  • The root has degree k and children of the root are themselves Binomial Trees with order k-1, k-2,.. 0 from left to right. 
k = 0 (Single Node)
o
k = 1 (2 nodes)
[We take two k = 0 order Binomial Trees, and
make one as a child of other]
o
/
o
k = 2 (4 nodes)
[We take two k = 1 order Binomial Trees, and
make one as a child of other]
o
/ \
o o
/
o
k = 3 (8 nodes)
[We take two k = 2 order Binomial Trees, and
make one as a child of other]
o
/ | \
o o o
/ \ |
o o o
/
o

The following diagram is referred to form the 2nd Edition of the CLRS book. 

BinomialTree

Binomial Heap: 

A Binomial Heap is a set of Binomial Trees where each Binomial Tree follows the Min Heap property. And there can be at most one Binomial Tree of any degree. 
Examples Binomial Heap: 

12------------10--------------------20
/ \ / | \
15 50 70 50 40
| / | |
30 80 85 65
|
100
A Binomial Heap with 13 nodes. It is a collection of 3
Binomial Trees of orders 0, 2, and 3 from left to right.
10--------------------20
/ \ / | \
15 50 70 50 40
| / | |
30 80 85 65
|
100

A Binomial Heap with 12 nodes. It is a collection of 2 
Binomial Trees of orders 2 and 3 from left to right. 

Programs to implement Binomial heap:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Class for each node in the Binomial Heap
class Node {
public:
    int value;
    Node* parent;
    vector<Node*> children;
    int degree;
    bool marked;
 
    Node(int val) {
        value = val;
        parent = nullptr;
        children.clear();
        degree = 0;
        marked = false;
    }
};
 
// Class for the Binomial Heap data structure
class BinomialHeap {
public:
    vector<Node*> trees;
    Node* min_node;
    int count;
 
    // Constructor for the Binomial Heap
    BinomialHeap() {
        min_node = nullptr;
        count = 0;
        trees.clear();
    }
 
    // Check if the heap is empty
    bool is_empty() {
        return min_node == nullptr;
    }
 
    // Insert a new value into the heap
    void insert(int value) {
        Node* node = new Node(value);
        BinomialHeap heap;
        heap.trees.push_back(node);
        merge(heap);
    }
 
    // Get the minimum value in the heap
    int get_min() {
        return min_node->value;
    }
 
    // Extract the minimum value from the heap
    int extract_min() {
        Node* minNode = min_node;
        trees.erase(remove(trees.begin(), trees.end(), minNode), trees.end());
        BinomialHeap heap;
        heap.trees = minNode->children;
        merge(heap);
        _find_min();
        count -= 1;
        return minNode->value;
    }
 
    // Merge two binomial heaps
    void merge(BinomialHeap& other_heap) {
        trees.insert(trees.end(), other_heap.trees.begin(), other_heap.trees.end());
        count += other_heap.count;
        _find_min();
    }
 
    // Find the minimum value in the heap
    void _find_min() {
        min_node = nullptr;
        for (Node* tree : trees) {
            if (min_node == nullptr || tree->value < min_node->value) {
                min_node = tree;
            }
        }
    }
 
    // Decrease the key of a node
    void decrease_key(Node* node, int new_value) {
        if (new_value > node->value) {
            throw invalid_argument("New value is greater than the current value");
        }
        node->value = new_value;
        _bubble_up(node);
    }
 
    // Delete a specific node from the heap
    void delete_node(Node* node) {
        decrease_key(node, INT_MIN);
        extract_min();
    }
 
    // Perform the bubbling up operation
    void _bubble_up(Node* node) {
        Node* parent = node->parent;
        while (parent != nullptr && node->value < parent->value) {
            swap(node->value, parent->value);
            node = parent;
            parent = node->parent;
        }
    }
 
    // Link two trees together
    void _link(Node* tree1, Node* tree2) {
        if (tree1->value > tree2->value) {
            swap(tree1, tree2);
        }
        tree2->parent = tree1;
        tree1->children.push_back(tree2);
        tree1->degree += 1;
    }
 
    // Consolidate the trees in the heap
    void _consolidate() {
        int max_degree = static_cast<int>(floor(log2(count))) + 1;
        vector<Node*> degree_to_tree(max_degree + 1, nullptr);
 
        while (!trees.empty()) {
            Node* current = trees[0];
            trees.erase(trees.begin());
            int degree = current->degree;
            while (degree_to_tree[degree] != nullptr) {
                Node* other = degree_to_tree[degree];
                degree_to_tree[degree] = nullptr;
                if (current->value < other->value) {
                    _link(current, other);
                } else {
                    _link(other, current);
                    current = other;
                }
                degree++;
            }
            degree_to_tree[degree] = current;
        }
 
        min_node = nullptr;
        trees.clear();
        for (Node* tree : degree_to_tree) {
            if (tree != nullptr) {
                trees.push_back(tree);
                if (min_node == nullptr || tree->value < min_node->value) {
                    min_node = tree;
                }
            }
        }
    }
 
    // Get the size of the heap
    int size() {
        return count;
    }
};
 
// This code is contributed by Susobhan Akhuli


Java




// Java approach
import java.util.*;
 
// Class for each node in the Binomial Heap
class Node {
    public int value;
    public Node parent;
    public List<Node> children;
    public int degree;
    public boolean marked;
 
    public Node(int val) {
        value = val;
        parent = null;
        children = new ArrayList<>();
        degree = 0;
        marked = false;
    }
}
 
// Class for the Binomial Heap data structure
class BinomialHeap {
    public List<Node> trees;
    public Node min_node;
    public int count;
 
    // Constructor for the Binomial Heap
    public BinomialHeap() {
        min_node = null;
        count = 0;
        trees = new ArrayList<>();
    }
 
    // Check if the heap is empty
    public boolean is_empty() {
        return min_node == null;
    }
 
    // Insert a new value into the heap
    public void insert(int value) {
        Node node = new Node(value);
        BinomialHeap heap = new BinomialHeap();
        heap.trees.add(node);
        merge(heap);
    }
 
    // Get the minimum value in the heap
    public int get_min() {
        return min_node.value;
    }
 
    // Extract the minimum value from the heap
    public int extract_min() {
        Node minNode = min_node;
        trees.remove(minNode);
        BinomialHeap heap = new BinomialHeap();
        heap.trees = minNode.children;
        merge(heap);
        _find_min();
        count -= 1;
        return minNode.value;
    }
 
    // Merge two binomial heaps
    public void merge(BinomialHeap other_heap) {
        trees.addAll(other_heap.trees);
        count += other_heap.count;
        _find_min();
    }
 
    // Find the minimum value in the heap
    public void _find_min() {
        min_node = null;
        for (Node tree : trees) {
            if (min_node == null || tree.value < min_node.value) {
                min_node = tree;
            }
        }
    }
 
    // Decrease the key of a node
    public void decrease_key(Node node, int new_value) {
        if (new_value > node.value) {
            throw new IllegalArgumentException("New value is greater than the current value");
        }
        node.value = new_value;
        _bubble_up(node);
    }
 
    // Delete a specific node from the heap
    public void delete_node(Node node) {
        decrease_key(node, Integer.MIN_VALUE);
        extract_min();
    }
 
    // Perform the bubbling up operation
    public void _bubble_up(Node node) {
        Node parent = node.parent;
        while (parent != null && node.value < parent.value) {
            int temp = node.value;
            node.value = parent.value;
            parent.value = temp;
            node = parent;
            parent = node.parent;
        }
    }
 
    // Link two trees together
    public void _link(Node tree1, Node tree2) {
        if (tree1.value > tree2.value) {
            Node temp = tree1;
            tree1 = tree2;
            tree2 = temp;
        }
        tree2.parent = tree1;
        tree1.children.add(tree2);
        tree1.degree += 1;
    }
 
    // Consolidate the trees in the heap
    public void _consolidate() {
        int max_degree = (int) Math.floor(Math.log(count) / Math.log(2)) + 1;
        Node[] degree_to_tree = new Node[max_degree + 1];
 
        while (!trees.isEmpty()) {
            Node current = trees.get(0);
            trees.remove(0);
            int degree = current.degree;
            while (degree_to_tree[degree] != null) {
                Node other = degree_to_tree[degree];
                degree_to_tree[degree] = null;
                if (current.value < other.value) {
                    _link(current, other);
                } else {
                    _link(other, current);
                    current = other;
                }
                degree++;
            }
            degree_to_tree[degree] = current;
        }
 
        min_node = null;
        trees.clear();
        for (Node tree : degree_to_tree) {
            if (tree != null) {
                trees.add(tree);
                if (min_node == null || tree.value < min_node.value) {
                    min_node = tree;
                }
            }
        }
    }
 
    // Get the size of the heap
    public int size() {
        return count;
    }
}
 
// This code is contributed by Susobhan Akhuli


Python3




import math
  
class Node:
    def __init__(self, value):
        self.value = value
        self.parent = None
        self.children = []
        self.degree = 0
        self.marked = False
  
class BinomialHeap:
    def __init__(self):
        self.trees = []
        self.min_node = None
        self.count = 0
  
    def is_empty(self):
        return self.min_node is None
  
    def insert(self, value):
        node = Node(value)
        self.merge(BinomialHeap(node))
  
    def get_min(self):
        return self.min_node.value
  
    def extract_min(self):
        min_node = self.min_node
        self.trees.remove(min_node)
        self.merge(BinomialHeap(*min_node.children))
        self._find_min()
        self.count -= 1
        return min_node.value
  
    def merge(self, other_heap):
        self.trees.extend(other_heap.trees)
        self.count += other_heap.count
        self._find_min()
  
    def _find_min(self):
        self.min_node = None
        for tree in self.trees:
            if self.min_node is None or tree.value < self.min_node.value:
                self.min_node = tree
  
    def decrease_key(self, node, new_value):
        if new_value > node.value:
            raise ValueError("New value is greater than current value")
        node.value = new_value
        self._bubble_up(node)
  
    def delete(self, node):
        self.decrease_key(node, float('-inf'))
        self.extract_min()
  
    def _bubble_up(self, node):
        parent = node.parent
        while parent is not None and node.value < parent.value:
            node.value, parent.value = parent.value, node.value
            node, parent = parent, node
  
    def _link(self, tree1, tree2):
        if tree1.value > tree2.value:
            tree1, tree2 = tree2, tree1
        tree2.parent = tree1
        tree1.children.append(tree2)
        tree1.degree += 1
  
    def _consolidate(self):
        max_degree = int(math.log(self.count, 2))
        degree_to_tree = [None] * (max_degree + 1)
  
        while self.trees:
            current = self.trees.pop(0)
            degree = current.degree
            while degree_to_tree[degree] is not None:
                other = degree_to_tree[degree]
                degree_to_tree[degree] = None
                if current.value < other.value:
                    self._link(current, other)
                else:
                    self._link(other, current)
                degree += 1
            degree_to_tree[degree] = current
  
        self.min_node = None
        self.trees = [tree for tree in degree_to_tree if tree is not None]
  
    def __len__(self):
        return self.count


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
using System.Linq;
 
// Class for each node in the Binomial Heap
class Node {
    public int Value;
    public Node Parent;
    public List<Node> Children;
    public int Degree;
    public bool Marked;
 
    public Node(int val)
    {
        Value = val;
        Parent = null;
        Children = new List<Node>();
        Degree = 0;
        Marked = false;
    }
}
 
// Class for the Binomial Heap data structure
class BinomialHeap {
    public List<Node> Trees;
    public Node MinNode;
    public int Count;
 
    // Constructor for the Binomial Heap
    public BinomialHeap()
    {
        MinNode = null;
        Count = 0;
        Trees = new List<Node>();
    }
 
    // Check if the heap is empty
    public bool IsEmpty() { return MinNode == null; }
 
    // Insert a new value into the heap
    public void Insert(int value)
    {
        Node node = new Node(value);
        BinomialHeap heap = new BinomialHeap();
        heap.Trees.Add(node);
        Merge(heap);
    }
 
    // Get the minimum value in the heap
    public int GetMin() { return MinNode.Value; }
 
    // Extract the minimum value from the heap
    public int ExtractMin()
    {
        Node minNode = MinNode;
        Trees.Remove(minNode);
        BinomialHeap heap = new BinomialHeap();
        heap.Trees = minNode.Children;
        Merge(heap);
        FindMin();
        Count -= 1;
        return minNode.Value;
    }
 
    // Merge two binomial heaps
    public void Merge(BinomialHeap otherHeap)
    {
        Trees.AddRange(otherHeap.Trees);
        Count += otherHeap.Count;
        FindMin();
    }
 
    // Find the minimum value in the heap
    private void FindMin()
    {
        MinNode = null;
        foreach(Node tree in Trees)
        {
            if (MinNode == null
                || tree.Value < MinNode.Value) {
                MinNode = tree;
            }
        }
    }
 
    // Decrease the key of a node
    public void DecreaseKey(Node node, int newValue)
    {
        if (newValue > node.Value) {
            throw new ArgumentException(
                "New value is greater than the current value");
        }
        node.Value = newValue;
        BubbleUp(node);
    }
 
    // Delete a specific node from the heap
    public void DeleteNode(Node node)
    {
        DecreaseKey(node, int.MinValue);
        ExtractMin();
    }
 
    // Perform the bubbling up operation
    private void BubbleUp(Node node)
    {
        Node parent = node.Parent;
        while (parent != null
               && node.Value < parent.Value) {
            Swap(ref node.Value, ref parent.Value);
            node = parent;
            parent = node.Parent;
        }
    }
 
    // Link two trees together
    private void Link(Node tree1, Node tree2)
    {
        if (tree1.Value > tree2.Value) {
            Swap(ref tree1, ref tree2);
        }
        tree2.Parent = tree1;
        tree1.Children.Add(tree2);
        tree1.Degree += 1;
    }
 
    // Consolidate the trees in the heap
    private void Consolidate()
    {
        int maxDegree
            = (int)Math.Floor(Math.Log2(Count)) + 1;
        List<Node> degreeToTree = new List<Node>(
            Enumerable.Repeat<Node>(null, maxDegree + 1));
 
        while (Trees.Any()) {
            Node current = Trees[0];
            Trees.Remove(current);
            int degree = current.Degree;
            while (degreeToTree[degree] != null) {
                Node other = degreeToTree[degree];
                degreeToTree[degree] = null;
                if (current.Value < other.Value) {
                    Link(current, other);
                }
                else {
                    Link(other, current);
                    current = other;
                }
                degree++;
            }
            degreeToTree[degree] = current;
        }
 
        MinNode = null;
        Trees.Clear();
        foreach(Node tree in degreeToTree)
        {
            if (tree != null) {
                Trees.Add(tree);
                if (MinNode == null
                    || tree.Value < MinNode.Value) {
                    MinNode = tree;
                }
            }
        }
    }
 
    // Get the size of the heap
    public int Size() { return Count; }
 
    // Helper method to swap two integers
    private void Swap(ref int a, ref int b)
    {
        int temp = a;
        a = b;
        b = temp;
    }
}
 
// This code is contributed by Susobhan Akhuli


Javascript




// Javascript program for the above approach
 
class Node {
  constructor(value) {
    this.value = value;
    this.parent = null;
    this.children = [];
    this.degree = 0;
    this.marked = false;
  }
}
 
class BinomialHeap {
  constructor() {
    this.trees = [];
    this.min_node = null;
    this.count = 0;
  }
 
  is_empty() {
    return this.min_node === null;
  }
 
  insert(value) {
    let node = new Node(value);
    this.merge(new BinomialHeap(node));
  }
 
  get_min() {
    return this.min_node.value;
  }
 
  extract_min() {
    let min_node = this.min_node;
    this.trees.splice(this.trees.indexOf(min_node), 1);
    this.merge(new BinomialHeap(...min_node.children));
    this._find_min();
    this.count -= 1;
    return min_node.value;
  }
 
  merge(other_heap) {
    this.trees = [...this.trees, ...other_heap.trees];
    this.count += other_heap.count;
    this._find_min();
  }
 
  _find_min() {
    this.min_node = null;
    for (let tree of this.trees) {
      if (this.min_node === null || tree.value < this.min_node.value) {
        this.min_node = tree;
      }
    }
  }
 
  decrease_key(node, new_value) {
    if (new_value > node.value) {
      throw new Error("New value is greater than current value");
    }
    node.value = new_value;
    this._bubble_up(node);
  }
 
  delete(node) {
    this.decrease_key(node, -Infinity);
    this.extract_min();
  }
 
  _bubble_up(node) {
    let parent = node.parent;
    while (parent !== null && node.value < parent.value) {
      [node.value, parent.value] = [parent.value, node.value];
      [node, parent] = [parent, node];
    }
  }
 
  _link(tree1, tree2) {
    if (tree1.value > tree2.value) {
      [tree1, tree2] = [tree2, tree1];
    }
    tree2.parent = tree1;
    tree1.children.push(tree2);
    tree1.degree += 1;
  }
 
  _consolidate() {
    let max_degree = Math.floor(Math.log2(this.count)) + 1;
    let degree_to_tree = new Array(max_degree + 1).fill(null);
 
    while (this.trees.length) {
      let current = this.trees.shift();
      let degree = current.degree;
      while (degree_to_tree[degree] !== null) {
        let other = degree_to_tree[degree];
        degree_to_tree[degree] = null;
        if (current.value < other.value) {
          this._link(current, other);
        } else {
          this._link(other, current);
        }
        degree += 1;
      }
      degree_to_tree[degree] = current;
    }
 
    this.min_node = null;
    this.trees = degree_to_tree.filter((tree) => tree !== null);
  }
 
  get length() {
    return this.count;
  }
}
 
// This code is contributed by sdeadityasharma


Binary Representation of a number and Binomial Heaps 
A Binomial Heap with n nodes has the number of Binomial Trees equal to the number of set bits in the binary representation of n. For example, let n be 13, there are 3 set bits in the binary representation of n (00001101), hence 3 Binomial Trees. We can also relate the degree of these Binomial Trees with positions of set bits. With this relation, we can conclude that there are O(Logn) Binomial Trees in a Binomial Heap with ‘n’ nodes. 
Operations of Binomial Heap: 
The main operation in Binomial Heap is a union(), all other operations mainly use this operation. The union() operation is to combine two Binomial Heaps into one. Let us first discuss other operations, we will discuss union later.

  1. insert(H, k): Inserts a key ‘k’ to Binomial Heap ‘H’. This operation first creates a Binomial Heap with a single key ‘k’, then calls union on H and the new Binomial heap. 
  2. getting(H): A simple way to get in() is to traverse the list of the roots of Binomial Trees and return the minimum key. This implementation requires O(Logn) time. It can be optimized to O(1) by maintaining a pointer to the minimum key root. 
  3. extracting(H): This operation also uses a union(). We first call getMin() to find the minimum key Binomial Tree, then we remove the node and create a new Binomial Heap by connecting all subtrees of the removed minimum node. Finally, we call union() on H and the newly created Binomial Heap. This operation requires O(Logn) time. 
  4. delete(H): Like Binary Heap, the delete operation first reduces the key to minus infinite, then calls extracting(). 
  5. decrease key(H): decrease key() is also similar to Binary Heap. We compare the decreased key with its parent and if the parent’s key is more, we swap keys and recur for the parent. We stop when we either reach a node whose parent has a smaller key or we hit the root node. The time complexity of the decrease key() is O(Logn). 
    Union operation in Binomial Heap: 
    Given two Binomial Heaps H1 and H2, union(H1, H2) creates a single Binomial Heap. 
  6. The first step is to simply merge the two Heaps in non-decreasing order of degrees. In the following diagram, figure(b) shows the result after merging. 
  7. After the simple merge, we need to make sure that there is at most one Binomial Tree of any order. To do this, we need to combine Binomial Trees of the same order. We traverse the list of merged roots, we keep track of three-pointers, prev, x, and next-x. There can be the following 4 cases when we traverse the list of roots. 
    —–Case 1: Orders of x and next-x are not the same, we simply move ahead. 
    In the following 3 cases, orders of x and next-x are the same. 
    —–Case 2: If the order of next-next-x is also the same, move ahead. 
    —–Case 3: If the key of x is smaller than or equal to the key of next-x, then make next-x a child of x by linking it with x. 
    —–Case 4: If the key of x is greater, then make x the child of next. 
    The following diagram is taken from the 2nd Edition of the CLRS book. 
     

BinomialHeapUnion

Time Complexity Analysis:

Operations

Binary Heap

Binomial Heap

Fibonacci Heap

Procedure

Worst-case

Worst-case

Amortized

Making Heap

Θ(1)

Θ(1)

Θ(1)

Inserting a node

Θ(log(n))

O(log(n))

Θ(1)

Finding Minimum key

Θ(1)

O(log(n))

O(1)

Extract-Minimum key

Θ(log(n))

Θ(log(n))

O(log(n))

Union or merging

Θ(n)

O(log(n))

Θ(1)

Decreasing a Key

Θ(log(n))

Θ(log(n))

Θ(1)

Deleting a node

Θ(log(n))

Θ(log(n))

O(log(n))

How to represent Binomial Heap? 
A Binomial Heap is a set of Binomial Trees. A Binomial Tree must be represented in a way that allows sequential access to all siblings, starting from the leftmost sibling (We need this in and extracting() and delete()). The idea is to represent Binomial Trees as the leftmost child and right-sibling representation, i.e., every node stores two pointers, one to the leftmost child and the other to the right sibling.  

Implementation of Binomial Heap 



Previous Article
Next Article

Similar Reads

Difference between Binary Heap, Binomial Heap and Fibonacci Heap
Binary Heap:A Binary Heap is a Binary Tree with following properties. It’s a complete binary tree i.e., all levels are completely filled except possibly the last level and the last level has all keys as left as possible. This property of Binary Heap makes them suitable to be stored in an array. A Binary Heap is either Min Heap or Max Heap. In a Min
2 min read
Memory representation of Binomial Heap
Prerequisites: Binomial Heap Binomial trees are multi-way trees typically stored in the left-child, right-sibling representation, and each node stores its degree. Binomial heaps are collection of binomial trees stored in ascending order of size. The root list in the heap is a linked list of roots of the Binomial heap. The degree of the nodes of the
2 min read
Implementation of Binomial Heap | Set - 2 (delete() and decreseKey())
In previous post i.e. Set 1 we have discussed that implements these below functions: insert(H, k): Inserts a key ‘k’ to Binomial Heap ‘H’. This operation first creates a Binomial Heap with single key ‘k’, then calls union on H and the new Binomial heap.getMin(H): A simple way to getMin() is to traverse the list of root of Binomial Trees and return
15+ min read
Implementation of Binomial Heap
In previous article, we have discussed about the concepts related to Binomial heap. Examples Binomial Heap: 12------------10--------------------20 / \ / | \ 15 50 70 50 40 | / | | 30 80 85 65 | 100A Binomial Heap with 13 nodes. It is a collection of 3 Binomial Trees of orders 0, 2 and 3 from left to right. 10--------------------20 / \ / | \ 15 50 7
15+ min read
Convert Min Heap to Max Heap
Given an array representation of min Heap, convert it to max Heap. Examples: Input: arr[] = {3, 5, 9, 6, 8, 20, 10, 12, 18, 9} 3 / \ 5 9 / \ / \ 6 8 20 10 / \ /12 18 9 Output: arr[] = {20, 18, 10, 12, 9, 9, 3, 5, 6, 8} 20 / \ 18 10 / \ / \ 12 9 9 3 / \ /5 6 8 Input: arr[] = {3, 4, 8, 11, 13}Output: arr[] = {13, 11, 8, 4, 3} Approach: To solve the p
10 min read
Heap Sort for decreasing order using min heap
Given an array of elements, sort the array in decreasing order using min heap. Examples: Input : arr[] = {5, 3, 10, 1} Output : arr[] = {10, 5, 3, 1} Input : arr[] = {1, 50, 100, 25} Output : arr[] = {100, 50, 25, 1} Prerequisite: Heap sort using min heap. Algorithm : Build a min heap from the input data. At this point, the smallest item is stored
13 min read
When building a Heap, is the structure of Heap unique?
What is Heap? A heap is a tree based data structure where the tree is a complete binary tree that maintains the property that either the children of a node are less than itself (max heap) or the children are greater than the node (min heap). Properties of Heap: Structural Property: This property states that it should be A Complete Binary Tree. For
4 min read
Difference between Min Heap and Max Heap
A Heap is a special Tree-based data structure in which the tree is a complete binary tree. Since a heap is a complete binary tree, a heap with N nodes has log N height. It is useful to remove the highest or lowest priority element. It is typically represented as an array. There are two types of Heaps in the data structure. Min-HeapIn a Min-Heap the
3 min read
What's the relationship between "a" heap and "the" heap?
A Heap: "A Heap" refers to the heap data structure where we can store data in a specific order. Heap is a Tree-based data structure where the tree is a complete binary tree. Heap is basically of two types: Max-Heap: The key at the Root node of the tree will be the greatest among all the keys present in that heap and the same property will be follow
15+ min read
Sum of Binomial coefficients
Given a positive integer n, the task is to find the sum of binomial coefficient i.enC0 + nC1 + nC2 + ....... + nCn-1 + nCnExamples: Input : n = 4 Output : 16 4C0 + 4C1 + 4C2 + 4C3 + 4C4 = 1 + 4 + 6 + 4 + 1 = 16 Input : n = 5 Output : 32 Method 1 (Brute Force): The idea is to evaluate each binomial coefficient term i.e nCr, where 0 &lt;= r &lt;= n a
8 min read