Find Median from Running Data Stream
Last Updated :
03 Oct, 2023
Given that integers are read from a data stream. Find the median of elements read so far in an efficient way.
There are two cases for median on the basis of data set size.
- If the data set has an odd number then the middle one will be consider as median.
- If the data set has an even number then there is no distinct middle value and the median will be the arithmetic mean of the two middle values.
Example:
Input Data Stream: 5, 15, 1, 3
Output: 5, 10,5, 4
Explanation:
After reading 1st element of stream – 5 -> median = 5
After reading 2nd element of stream – 5, 15 -> median = (5+15)/2 = 10
After reading 3rd element of stream – 5, 15, 1 -> median = 5
After reading 4th element of stream – 5, 15, 1, 3 -> median = (3+5)/2 = 4
Input Data Stream: 2, 2, 2, 2
Output: 2, 2, 2, 2
Explanation:
After reading 1st element of stream – 2 -> median = 2
After reading 2nd element of stream – 2, 2 -> median = (2+2)/2 = 2
After reading 3rd element of stream – 2, 2, 2 -> median = 2
After reading 4th element of stream – 2, 2, 2, 2 -> median = (2+2)/2 = 2
Find Median from Running Data Stream using Insertion Sort:
If we can sort the data as it appears, we can easily locate the median element. Insertion Sort is one such online algorithm that sorts the data appeared so far. At any instance of sorting, say after sorting i-th element, the first i elements of the array are sorted. The insertion sort doesn’t depend on future data to sort data input till that point. In other words, insertion sort considers data sorted so far while inserting the next element. This is the key part of insertion sort that makes it an online algorithm.
However, insertion sort takes O(n2) time to sort n elements. Perhaps we can use binary search on insertion sort to find the location of the next element in O(log n) time. Yet, we can’t do data movement in O(log n) time. No matter how efficient the implementation is, it takes polynomial time in case of insertion sort.
Below is the implementation of the above idea:
C++
#include <bits/stdc++.h>
using namespace std;
int binarySearch( float arr[], float item, int low, int high)
{
if (low >= high) {
return (item > arr[low]) ? (low + 1) : low;
}
int mid = (low + high) / 2;
if (item == arr[mid])
return mid + 1;
if (item > arr[mid])
return binarySearch(arr, item, mid + 1, high);
return binarySearch(arr, item, low, mid - 1);
}
void printMedian( float arr[], int n)
{
int i, j, pos;
float num;
int count = 1;
cout << "Median after reading 1"
<< " element is " << arr[0] << "\n" ;
for (i = 1; i < n; i++) {
float median;
j = i - 1;
num = arr[i];
pos = binarySearch(arr, num, 0, j);
while (j >= pos) {
arr[j + 1] = arr[j];
j--;
}
arr[j + 1] = num;
count++;
if (count % 2 != 0) {
median = arr[count / 2];
}
else {
median = (arr[(count / 2) - 1] + arr[count / 2])
/ 2;
}
cout << "Median after reading " << i + 1
<< " elements is " << median << "\n" ;
}
}
int main()
{
float arr[] = { 5, 15, 1, 3, 2, 8, 7, 9, 10, 6, 11, 4 };
int n = sizeof (arr) / sizeof (arr[0]);
printMedian(arr, n);
return 0;
}
|
Java
import java.util.*;
class GFG {
static int binarySearch( float arr[], float item,
int low, int high)
{
if (low >= high) {
return (item > arr[low]) ? (low + 1 ) : low;
}
int mid = (low + high) / 2 ;
if (item == arr[mid])
return mid + 1 ;
if (item > arr[mid])
return binarySearch(arr, item, mid + 1 , high);
return binarySearch(arr, item, low, mid - 1 );
}
static void printMedian( float arr[], int n)
{
int i, j, pos;
float num;
int count = 1 ;
System.out.println( "Median after reading 1"
+ " element is " + arr[ 0 ]);
for (i = 1 ; i < n; i++) {
float median;
j = i - 1 ;
num = arr[i];
pos = binarySearch(arr, num, 0 , j);
while (j >= pos) {
arr[j + 1 ] = arr[j];
j--;
}
arr[j + 1 ] = num;
count++;
if (count % 2 != 0 ) {
median = arr[count / 2 ];
}
else {
median = (arr[(count / 2 ) - 1 ]
+ arr[count / 2 ])
/ 2 ;
}
System.out.println( "Median after reading "
+ (i + 1 ) + " elements is "
+ median);
}
}
public static void main(String[] args)
{
float arr[]
= { 5 , 15 , 1 , 3 , 2 , 8 , 7 , 9 , 10 , 6 , 11 , 4 };
int n = arr.length;
printMedian(arr, n);
}
}
|
Python3
def binarySearch(arr, item, low, high):
if (low > = high):
return (low + 1 ) if (item > arr[low]) else low
mid = (low + high) / / 2
if (item = = arr[mid]):
return mid + 1
if (item > arr[mid]):
return binarySearch(arr, item, mid + 1 , high)
return binarySearch(arr, item, low, mid - 1 )
def printMedian(arr, n):
i, j, pos, num = 0 , 0 , 0 , 0
count = 1
print (f "Median after reading 1 element is {arr[0]}.0" )
for i in range ( 1 , n):
median = 0
j = i - 1
num = arr[i]
pos = binarySearch(arr, num, 0 , j)
while (j > = pos):
arr[j + 1 ] = arr[j]
j - = 1
arr[j + 1 ] = num
count + = 1
if (count % 2 ! = 0 ):
median = arr[count / / 2 ] / 1
else :
median = (arr[(count / / 2 ) - 1 ] + arr[count / / 2 ]) / 2
print (f "Median after reading {i + 1} elements is {median} " )
if __name__ = = "__main__" :
arr = [ 5 , 15 , 1 , 3 , 2 , 8 , 7 , 9 , 10 , 6 , 11 , 4 ]
n = len (arr)
printMedian(arr, n)
|
C#
using System;
class GFG{
static int binarySearch( float [] arr, float item, int low, int high)
{
if (low >= high) {
return (item > arr[low]) ? (low + 1) : low;
}
int mid = (low + high) / 2;
if (item == arr[mid])
return mid + 1;
if (item > arr[mid])
return binarySearch(arr, item, mid + 1, high);
return binarySearch(arr, item, low, mid - 1);
}
static void printMedian( float [] arr, int n)
{
int i, j, pos;
float num;
int count = 1;
Console.WriteLine( "Median after reading 1"
+ " element is " + arr[0]);
for (i = 1; i < n; i++) {
float median;
j = i - 1;
num = arr[i];
pos = binarySearch(arr, num, 0, j);
while (j >= pos) {
arr[j + 1] = arr[j];
j--;
}
arr[j + 1] = num;
count++;
if (count % 2 != 0) {
median = arr[count / 2];
}
else {
median = (arr[(count / 2) - 1] + arr[count / 2])
/ 2;
}
Console.WriteLine( "Median after reading " + (i + 1)
+ " elements is " + median );
}
}
public static void Main(String[] args)
{
float [] arr = { 5, 15, 1, 3, 2, 8, 7, 9, 10, 6, 11, 4 };
int n = arr.Length;
printMedian(arr, n);
}
}
|
Javascript
<script>
const binarySearch = (arr, item, low, high) => {
if (low >= high) {
return (item > arr[low]) ? (low + 1) : low;
}
let mid = parseInt((low + high) / 2);
if (item == arr[mid])
return mid + 1;
if (item > arr[mid])
return binarySearch(arr, item, mid + 1, high);
return binarySearch(arr, item, low, mid - 1);
}
const printMedian = (arr, n) => {
let i, j, pos, num;
let count = 1;
document.write(`Median after reading 1 element is ${arr[0]}<br/>`);
for (i = 1; i < n; i++) {
let median;
j = i - 1;
num = arr[i];
pos = binarySearch(arr, num, 0, j);
while (j >= pos) {
arr[j + 1] = arr[j];
j--;
}
arr[j + 1] = num;
count++;
if (count % 2 != 0) {
median = arr[parseInt(count / 2)];
}
else {
median = (arr[parseInt(count / 2) - 1] + arr[parseInt(count / 2)]) / 2;
}
document.write(`Median after reading ${i + 1} elements is ${median}<br/>`);
}
}
let arr = [5, 15, 1, 3, 2, 8, 7, 9, 10, 6, 11, 4];
let n = arr.length;
printMedian(arr, n);
</script>
|
Output
Median after reading 1 element is 5
Median after reading 2 elements is 10
Median after reading 3 elements is 5
Median after reading 4 elements is 4
Median after reading 5 elements is 3
Median after re...
Time Complexity: O(n2)
Auxiliary Space: O(1)
Find Median from Running Data Stream using Augmented self-balanced binary search tree (AVL, RB, etc…)
- At every node of BST, maintain a number of elements in the subtree rooted at that node. We can use a node as the root of a simple binary tree, whose left child is self-balancing BST with elements less than root and right child is self-balancing BST with elements greater than root. The root element always holds effective median.
- If the left and right subtrees contain a same number of elements, the root node holds the average of left and right subtree root data. Otherwise, the root contains the same data as the root of subtree which is having more elements. After processing an incoming element, the left and right subtrees (BST) are differed atmost by 1.
- Self-balancing BST is costly in managing the balancing factor of BST. However, they provide sorted data which we don’t need. We need median only. The next method makes use of Heaps to trace the median.
Find Median from Running Data Stream using Heaps
- Similar to above balancing BST Method, we can use a max heap on the left side to represent elements that are less than effective median, and a min-heap on the right side to represent elements that are greater than effective median.
- After processing an incoming element, the number of elements in heaps differs atmost by 1 element. When both heaps contain the same number of elements, we pick the average of heaps root data as effective median. When the heaps are not balanced, we select effective median from the root of the heap containing more elements.
Below is the implementation of the above approach:
C++14
#include <bits/stdc++.h>
using namespace std;
void streamMed( int A[], int n)
{
priority_queue< int > g, s;
for ( int i = 0; i < n; i++) {
s.push(A[i]);
int temp = s.top();
s.pop();
g.push(-1 * temp);
if (g.size() > s.size()) {
temp = g.top();
g.pop();
s.push(-1 * temp);
}
if (g.size() != s.size())
cout << ( double )s.top() << "\n" ;
else
cout << ( double )((s.top() * 1.0
- g.top() * 1.0)
/ 2)
<< "\n" ;
}
}
int main()
{
int A[] = { 5, 15, 1, 3, 2, 8, 7, 9, 10, 6, 11, 4 };
int N = sizeof (A) / sizeof (A[0]);
streamMed(A, N);
return 0;
}
|
Java
import java.io.*;
import java.util.*;
class GFG {
public static void streamMed( int A[], int N)
{
PriorityQueue<Double> g = new PriorityQueue<>();
PriorityQueue<Double> s = new PriorityQueue<>();
for ( int i = 0 ; i < N; i++) {
s.add(- 1.0 * A[i]);
g.add(- 1.0 * s.poll());
if (g.size() > s.size())
s.add(- 1.0 * g.poll());
if (g.size() != s.size())
System.out.println(- 1.0 * s.peek());
else
System.out.println((g.peek() - s.peek())
/ 2 );
}
}
public static void main(String[] args)
{
int A[] = { 5 , 15 , 1 , 3 , 2 , 8 , 7 , 9 , 10 , 6 , 11 , 4 };
int N = A.length;
streamMed(A, N);
}
}
|
Python3
from heapq import heappush, heappop, heapify
import math
def streamMed(arr, N):
g = []
s = []
for i in range ( len (arr)):
heappush(s, - arr[i])
heappush(g, - heappop(s))
if len (g) > len (s):
heappush(s, - heappop(g))
if len (g) ! = len (s):
print ( - s[ 0 ])
else :
print ((g[ 0 ] - s[ 0 ]) / 2 )
if __name__ = = '__main__' :
A = [ 5 , 15 , 1 , 3 , 2 , 8 , 7 , 9 , 10 , 6 , 11 , 4 ]
N = len (A)
streamMed(A, N)
|
C#
using System;
using System.Collections.Generic;
public class GFG {
static void StreamMed( int [] arr, int N)
{
SortedSet< int > g = new SortedSet< int >();
SortedSet< int > s = new SortedSet< int >();
for ( int i = 0; i < N; i++) {
s.Add(arr[i]);
g.Add(s.Max);
s.Remove(s.Max);
if (g.Count > s.Count) {
s.Add(g.Min);
g.Remove(g.Min);
}
if (s.Count < g.Count)
Console.WriteLine(g.Min);
else if (s.Count > g.Count)
Console.WriteLine(s.Max);
else
Console.WriteLine((g.Min + s.Max) / 2.0);
}
}
static public void Main()
{
int [] A = { 5, 15, 1, 3, 2, 8, 7, 9, 10, 6, 11, 4 };
int N = A.Length;
StreamMed(A, N);
}
}
|
Javascript
function streamMed(arr) {
var g = [];
var s = [];
for ( var i = 0; i < arr.length; i++) {
s.push(-arr[i]);
s.sort( function (a, b){ return a-b });
g.push(-s.shift());
g.sort( function (a, b){ return a-b });
if (g.length > s.length) {
s.unshift(-g.pop());
}
if (g.length != s.length) {
console.log(-s[0]);
} else {
console.log((g[0] - s[0]) / 2);
}
}
}
var A = [5, 15, 1, 3, 2, 8, 7, 9, 10, 6, 11, 4];
streamMed(A);
|
Output
5
10
5
4
3
4
5
6
7
6.5
7
6.5
Time Complexity: O(n * log n), All the operations within the loop (push, pop) take O(log n) time in the worst case for a heap of size N.
Auxiliary Space: O(n)
Median of Stream of Running Integers using STL
Please Login to comment...