Sum of all elements between k1’th and k2’th smallest elements
Last Updated :
06 Apr, 2023
Given an array of integers and two numbers k1 and k2. Find the sum of all elements between given two k1’th and k2’th smallest elements of the array. It may be assumed that (1 <= k1 < k2 <= n) and all elements of array are distinct.
Examples :
Input : arr[] = {20, 8, 22, 4, 12, 10, 14}, k1 = 3, k2 = 6
Output : 26
3rd smallest element is 10. 6th smallest element
is 20. Sum of all element between k1 & k2 is
12 + 14 = 26
Input : arr[] = {10, 2, 50, 12, 48, 13}, k1 = 2, k2 = 6
Output : 73
Method 1 (Sorting): First sort the given array using an O(n log n) sorting algorithm like Merge Sort, Heap Sort, etc and return the sum of all element between index k1 and k2 in the sorted array.
Implementation:
C++
#include <bits/stdc++.h>
using namespace std;
int sumBetweenTwoKth( int arr[], int n, int k1, int k2)
{
sort(arr, arr + n);
return accumulate(arr + k1, arr + k2 - 1, 0);
}
int main()
{
int arr[] = { 20, 8, 22, 4, 12, 10, 14 };
int k1 = 3, k2 = 6;
int n = sizeof (arr) / sizeof (arr[0]);
cout << sumBetweenTwoKth(arr, n, k1, k2);
return 0;
}
|
Java
import java.util.Arrays;
class GFG {
static int sumBetweenTwoKth( int arr[],
int k1, int k2)
{
Arrays.sort(arr);
int result = 0 ;
for ( int i = k1; i < k2 - 1 ; i++)
result += arr[i];
return result;
}
public static void main(String[] args)
{
int arr[] = { 20 , 8 , 22 , 4 , 12 , 10 , 14 };
int k1 = 3 , k2 = 6 ;
int n = arr.length;
System.out.print(sumBetweenTwoKth(arr,
k1, k2));
}
}
|
Python3
def sumBetweenTwoKth(arr, n, k1, k2):
arr.sort()
result = 0
for i in range (k1, k2 - 1 ):
result + = arr[i]
return result
arr = [ 20 , 8 , 22 , 4 , 12 , 10 , 14 ]
k1 = 3 ; k2 = 6
n = len (arr)
print (sumBetweenTwoKth(arr, n, k1, k2))
|
C#
using System;
class GFG {
static int sumBetweenTwoKth( int [] arr, int n,
int k1, int k2)
{
Array.Sort(arr);
int result = 0;
for ( int i = k1; i < k2 - 1; i++)
result += arr[i];
return result;
}
public static void Main()
{
int [] arr = { 20, 8, 22, 4, 12, 10, 14 };
int k1 = 3, k2 = 6;
int n = arr.Length;
Console.Write(sumBetweenTwoKth(arr, n, k1, k2));
}
}
|
PHP
<?php
function sumBetweenTwoKth( $arr , $n , $k1 , $k2 )
{
sort( $arr );
$result = 0;
for ( $i = $k1 ; $i < $k2 - 1; $i ++)
$result += $arr [ $i ];
return $result ;
}
$arr = array ( 20, 8, 22, 4, 12, 10, 14 );
$k1 = 3;
$k2 = 6;
$n = count ( $arr );;
echo sumBetweenTwoKth( $arr , $n , $k1 , $k2 );
?>
|
Javascript
<script>
function sumBetweenTwoKth(arr, k1 , k2)
{
arr.sort( function (a, b){ return a - b});
var result = 0;
for ( var i = k1; i < k2 - 1; i++)
result += arr[i];
return result;
}
var arr = [ 20, 8, 22, 4, 12, 10, 14 ];
var k1 = 3, k2 = 6;
var n = arr.length;
document.write(sumBetweenTwoKth(arr,
k1, k2));
</script>
|
Time Complexity: O(n log n)
Auxiliary Space: O(1)
Method 2 (Using Min Heap):
We can optimize the above solution by using a min-heap.
- Create a min heap of all array elements. (This step takes O(n) time)
- Do extract minimum k1 times (This step takes O(K1 Log n) time)
- Do extract minimum k2 – k1 – 1 time and sum all extracted elements. (This step takes O ((K2 – k1) * Log n) time)
Time Complexity Analysis:
- By doing a simple analysis, we can observe that time complexity of step3 [ Determining step for overall time complexity ] can reach to O(nlogn) also.
- Take a look at the following description:
- Time Complexity of step3 is: O((k2-k1)*log(n)) .
- In worst case, (k2-k1) would be almost O(n) [ Assume situation when k1=0 and k2=len(arr)-1 ]
- When O(k2-k1) =O(n) then overall complexity will be O(n* Log n ) .
- but in most cases…it will be lesser than O(n Log n) which is equal to sorting approach described above.
Implementation:
C++
#include <bits/stdc++.h>
using namespace std;
int n = 7;
void minheapify( int a[], int index)
{
int small = index;
int l = 2 * index + 1;
int r = 2 * index + 2;
if (l < n && a[l] < a[small])
small = l;
if (r < n && a[r] < a[small])
small = r;
if (small != index) {
swap(a[small], a[index]);
minheapify(a, small);
}
}
int main()
{
int i = 0;
int k1 = 3;
int k2 = 6;
int a[] = { 20, 8, 22, 4, 12, 10, 14 };
int ans = 0;
for (i = (n / 2) - 1; i >= 0; i--) {
minheapify(a, i);
}
k1--;
k2--;
for (i = 0; i <= k1; i++) {
a[0] = a[n - 1];
n--;
minheapify(a, 0);
}
for (i = k1 + 1; i < k2; i++) {
ans += a[0];
a[0] = a[n - 1];
n--;
minheapify(a, 0);
}
cout << ans;
return 0;
}
|
Java
class GFG
{
static int n = 7 ;
static void minheapify( int []a, int index)
{
int small = index;
int l = 2 * index + 1 ;
int r = 2 * index + 2 ;
if (l < n && a[l] < a[small])
small = l;
if (r < n && a[r] < a[small])
small = r;
if (small != index)
{
int t = a[small];
a[small] = a[index];
a[index] = t;
minheapify(a, small);
}
}
public static void main (String[] args)
{
int i = 0 ;
int k1 = 3 ;
int k2 = 6 ;
int []a = { 20 , 8 , 22 , 4 , 12 , 10 , 14 };
int ans = 0 ;
for (i = (n / 2 ) - 1 ; i >= 0 ; i--)
{
minheapify(a, i);
}
k1--;
k2--;
for (i = 0 ; i <= k1; i++)
{
a[ 0 ] = a[n - 1 ];
n--;
minheapify(a, 0 );
}
for (i = k1 + 1 ; i < k2; i++)
{
ans += a[ 0 ];
a[ 0 ] = a[n - 1 ];
n--;
minheapify(a, 0 );
}
System.out.println(ans);
}
}
|
Python3
n = 7
def minheapify(a, index):
small = index
l = 2 * index + 1
r = 2 * index + 2
if (l < n and a[l] < a[small]):
small = l
if (r < n and a[r] < a[small]):
small = r
if (small ! = index):
(a[small], a[index]) = (a[index], a[small])
minheapify(a, small)
i = 0
k1 = 3
k2 = 6
a = [ 20 , 8 , 22 , 4 , 12 , 10 , 14 ]
ans = 0
for i in range ((n / / 2 ) - 1 , - 1 , - 1 ):
minheapify(a, i)
k1 - = 1
k2 - = 1
for i in range ( 0 , k1 + 1 ):
a[ 0 ] = a[n - 1 ]
n - = 1
minheapify(a, 0 )
for i in range (k1 + 1 , k2) :
ans + = a[ 0 ]
a[ 0 ] = a[n - 1 ]
n - = 1
minheapify(a, 0 )
print (ans)
|
C#
using System;
class GFG
{
static int n = 7;
static void minheapify( int []a, int index)
{
int small = index;
int l = 2 * index + 1;
int r = 2 * index + 2;
if (l < n && a[l] < a[small])
small = l;
if (r < n && a[r] < a[small])
small = r;
if (small != index)
{
int t = a[small];
a[small] = a[index];
a[index] = t;
minheapify(a, small);
}
}
static void Main()
{
int i = 0;
int k1 = 3;
int k2 = 6;
int []a = { 20, 8, 22, 4, 12, 10, 14 };
int ans = 0;
for (i = (n / 2) - 1; i >= 0; i--)
{
minheapify(a, i);
}
k1--;
k2--;
for (i = 0; i <= k1; i++)
{
a[0] = a[n - 1];
n--;
minheapify(a, 0);
}
for (i = k1 + 1; i < k2; i++)
{
ans += a[0];
a[0] = a[n - 1];
n--;
minheapify(a, 0);
}
Console.Write(ans);
}
}
|
Javascript
<script>
let n = 7;
function minheapify(a, index)
{
let small = index;
let l = 2 * index + 1;
let r = 2 * index + 2;
if (l < n && a[l] < a[small])
small = l;
if (r < n && a[r] < a[small])
small = r;
if (small != index)
{
let t = a[small];
a[small] = a[index];
a[index] = t;
minheapify(a, small);
}
}
let i = 0;
let k1 = 3;
let k2 = 6;
let a = [ 20, 8, 22, 4, 12, 10, 14 ];
let ans = 0;
for (i = parseInt(n / 2, 10) - 1; i >= 0; i--)
{
minheapify(a, i);
}
k1--;
k2--;
for (i = 0; i <= k1; i++)
{
a[0] = a[n - 1];
n--;
minheapify(a, 0);
}
for (i = k1 + 1; i < k2; i++)
{
ans += a[0];
a[0] = a[n - 1];
n--;
minheapify(a, 0);
}
document.write(ans);
</script>
|
Time Complexity: O(n + k2 Log n)
Auxiliary Space: O(1)
Method 3 : (Using Max Heap – most optimized )
The Below Idea uses the Max Heap Strategy to find the solution.
Algorithm:
- The idea is to find the Kth Smallest element for the K2 .
- Then just keep an popping the elements until the size of heap is K1, and make sure to add the elements to a variable before popping the elements.
Now the idea revolves around Kth Smallest Finding:
- The CRUX over here is that, we are storing the K smallest elements in the MAX Heap
- So while every push, if the size goes over K, then we pop the Maximum value.
- This way after whole traversal. we are left out with K elements.
- Then the N-K th Largest Element is Popped and given, which is as same as K’th Smallest element.
So by this manner we can write a functional code with using the C++ STL Priority_Queue, we get the most time and space optimized solution.
C++
#include <bits/stdc++.h>
using namespace std;
long long sumBetweenTwoKth( long long A[], long long N,
long long K1, long long K2)
{
priority_queue< long long > maxH;
for ( int i = 0; i < N; i++) {
maxH.push(A[i]);
if (maxH.size() > K2) {
maxH.pop();
}
}
maxH.pop();
long long ans = 0;
while (maxH.size() > K1) {
ans += maxH.top();
maxH.pop();
}
return ans;
}
int main()
{
long long arr[] = { 20, 8, 22, 4, 12, 10, 14 };
long long k1 = 3, k2 = 6;
long long n = sizeof (arr) / sizeof (arr[0]);
cout << sumBetweenTwoKth(arr, n, k1, k2);
return 0;
}
|
Java
import java.util.*;
public class GFG {
static long sumBetweenTwoKth( long A[], long N, long K1,
long K2)
{
PriorityQueue<Long> maxH = new PriorityQueue<>(
Collections.reverseOrder());
for ( int i = 0 ; i < N; i++) {
maxH.add(A[i]);
if (maxH.size() > K2) {
maxH.remove();
}
}
maxH.remove();
long ans = 0 ;
while (maxH.size() > K1) {
ans += maxH.peek();
maxH.remove();
}
return ans;
}
public static void main(String[] args)
{
long arr[] = { 20 , 8 , 22 , 4 , 12 , 10 , 14 };
long k1 = 3 , k2 = 6 ;
long n = arr.length;
System.out.println(
sumBetweenTwoKth(arr, n, k1, k2));
}
}
|
Python3
def sumBetweenTwoKth(A, N, K1, K2):
maxH = []
for i in range ( 0 ,N):
maxH.append(A[i])
maxH.sort(reverse = True )
if ( len (maxH) > K2):
maxH.pop( 0 )
maxH.pop( 0 )
ans = 0
while ( len (maxH) > K1):
ans + = maxH[ 0 ]
maxH.pop( 0 )
return ans
arr = [ 20 , 8 , 22 , 4 , 12 , 10 , 14 ]
k1 = 3
k2 = 6
n = len (arr)
print (sumBetweenTwoKth(arr, n, k1, k2))
|
C#
using System;
using System.Collections.Generic;
public class GFG {
public static long sumBetweenTwoKth( long [] A, long N,
long K1, long K2)
{
SortedSet< long > maxH = new SortedSet< long >();
for ( int i = 0; i < N; i++) {
maxH.Add(A[i]);
if (maxH.Count > K2) {
maxH.Remove(maxH.Max);
}
}
maxH.Remove(maxH.Max);
long ans = 0;
while (maxH.Count > K1) {
ans += maxH.Max;
maxH.Remove(maxH.Max);
}
return ans;
}
static public void Main()
{
long [] arr = { 20, 8, 22, 4, 12, 10, 14 };
long k1 = 3, k2 = 6;
long n = arr.Length;
Console.WriteLine(sumBetweenTwoKth(arr, n, k1, k2));
}
}
|
Javascript
function PriorityQueue () {
let collection = [];
this .printCollection = function () {
(console.log(collection));
};
this .enqueue = function (element){
if ( this .isEmpty()){
collection.push(element);
} else {
let added = false ;
for (let i=0; i<collection.length; i++){
if (element[1] < collection[i][1]){
collection.splice(i,0,element);
added = true ;
break ;
}
}
if (!added){
collection.push(element);
}
}
};
this .dequeue = function () {
let value = collection.shift();
return value[0];
};
this .front = function () {
return collection[0];
};
this .size = function () {
return collection.length;
};
this .isEmpty = function () {
return (collection.length === 0);
};
}
function sumBetweenTwoKth(A, N, K1, K2)
{
let maxH = new PriorityQueue();
for (let i = 0; i < N; i++) {
maxH.enqueue(A[i]);
if (maxH.size() > K2) {
maxH.dequeue();
}
}
maxH.dequeue();
let ans = 0;
while (maxH.size() > K1) {
ans += maxH.front();
maxH.dequeue();
}
return ans;
}
let arr = [ 20, 8, 22, 4, 12, 10, 14 ];
let k1 = 3, k2 = 6;
let n = arr.length;
console.log(sumBetweenTwoKth(arr, n, k1, k2));
|
Time Complexity: ( N * log K2 ) + ( (K2-K1) * log (K2-K1) ) + O(N) = O(NLogK2) (Dominant Term)
Reasons:
- The Traversal O(N) in the function
- Time Complexity for finding K2’th smallest element is ( N * log K2 )
- Time Complexity for popping ( K2-K1 ) elements is ( (K2-K1) * log (K2-K1) )
- As 1 Insertion takes O(LogK) where K is the size of Heap.
- As 1 Deletion takes O(LogK) where K is the size of Heap.
Extra Space Complexity: O(K2), As we use Heap / Priority Queue and we only store at max K elements, not more than that.
The above Method-3 Idea, Algorithm, and Code are contributed by Balakrishnan R (rbkraj000 – GFG ID).
References : https://www.geeksforgeeks.org/heap-sort
other Geeks.
Please Login to comment...