Open In App

Count pairs with given sum

Last Updated : 13 Apr, 2024
Improve
Improve
Like Article
Like
Save
Share
Report

Given an array of N integers, and an integer K, the task is to find the number of pairs of integers in the array whose sum is equal to K.

Examples:  

Input: arr[] = {1, 5, 7, -1}, K = 6
Output:  2
Explanation: Pairs with sum 6 are (1, 5) and (7, -1).

Input: arr[] = {1, 5, 7, -1, 5}, K = 6
Output:  3
Explanation: Pairs with sum 6 are (1, 5), (7, -1) & (1, 5).         

Input: arr[] = {1, 1, 1, 1}, K = 2
Output:  6
Explanation: Pairs with sum 2 are (1, 1), (1, 1), (1, 1), (1, 1), (1, 1).

Input: arr[] = {10, 12, 10, 15, -1, 7, 6, 5, 4, 2, 1, 1, 1}, K = 11
Output:  9
Explanation: Pairs with sum 11 are (10, 1), (10, 1), (10, 1), (12, -1), (10, 1), (10, 1), (10, 1), (7, 4), (6, 5).

Naïve Approach: 

A simple solution is to user nested loops, one for traversal of each element and other for checking if there’s another number in the array which can be added to it to give K.

Illustration:

Consider an array arr [ ] = {1 ,5 ,7 ,1} and K = 6

  • initialize count = 0
  • First iteration
    • i = 0
    • j = 1
      • arr[i]+arr[j] == K
      • count = 1
    • i = 0
    • j = 2
      • arr[i] + arr[j] != K
      • count = 1
    • i = 0
    • j = 3
      • arr[i] + arr[j] != K
      • count = 1
  • Second iteration
    • i = 1
    • j = 2
      • arr[i] + arr[j] != K
      • count = 1
    • i = 1
    • j = 3
      • arr[i] + arr[j] == K
      • count = 2
  • Third iteration
    • i = 2
    • j = 3
      • arr[i] + arr[j] != K
      • count = 2
  • Hence Output is 2 .

Follow the steps below to solve the given problem:

Follow the steps below for implementation:

  • Initialize the count variable with 0 which stores the result.
  • Use two nested loop and check if arr[i] + arr[j] == K, then increment the count variable.
  • Return the count.

Below is the implementation of the above approach.

C++
// C++ implementation of simple method to find count of
// pairs with given sum K.
#include <bits/stdc++.h>
using namespace std;

// Returns number of pairs in arr[0..n-1] with sum equal
// to 'K'
int getPairsCount(int arr[], int n, int K)
{
    // Initialize result
    int count = 0;

    // Consider all possible pairs and check their sums
    for (int i = 0; i < n; i++)
        for (int j = i + 1; j < n; j++)
            if (arr[i] + arr[j] == K)
                count++;

    return count;
}

// Driver function to test the above function
int main()
{
    int arr[] = { 1, 5, 7, -1 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int K = 6;
    cout << "Count of pairs is "
         // Function Call
         << getPairsCount(arr, n, K);
    return 0;
}

// This code is contributed by Aditya Kumar (adityakumar129)
C
// C implementation of simple method to find count of
// pairs with given sum.
#include <stdio.h>

// Returns number of pairs in arr[0..n-1] with sum equal
// to 'sum'
int getPairsCount(int arr[], int n, int K)
{
   // Initialize result
    int count = 0;

    // Consider all possible pairs and check their sums
    for (int i = 0; i < n; i++)
        for (int j = i + 1; j < n; j++)
            if (arr[i] + arr[j] == K)
                count++;

    return count;
}

// Driver function to test the above function
int main()
{
    int arr[] = { 1, 5, 7, -1 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int K = 6;
    printf("Count of pairs is %d",
           // Function Call
           getPairsCount(arr, n, K));
    return 0;
}

// This code is contributed by Aditya Kumar (adityakumar129)
Java
// Java implementation of simple method to find count of
// pairs with given sum.
public class find {
    public static void main(String args[])
    {
        int[] arr = { 1, 5, 7, -1, 5 };
        int K = 6;
      // Function Call
        getPairsCount(arr, K);
    }

    // Prints number of pairs in arr[0..n-1] with sum equal
    // to 'sum'
    public static void getPairsCount(int[] arr, int K)
    {
        // Initialize result
        int count = 0; 

        // Consider all possible pairs and check their sums
        for (int i = 0; i < arr.length; i++)
            for (int j = i + 1; j < arr.length; j++)
                if ((arr[i] + arr[j]) == K)
                    count++;

        System.out.printf("Count of pairs is %d", count);
    }
}

// This code is contributed by Aditya Kumar (adityakumar129)
C#
// C# implementation of simple
// method to find count of
// pairs with given sum.
using System;

class GFG {
    public static void getPairsCount(int[] arr, int sum)
    {

        int count = 0; // Initialize result

        // Consider all possible pairs
        // and check their sums
        for (int i = 0; i < arr.Length; i++)
            for (int j = i + 1; j < arr.Length; j++)
                if ((arr[i] + arr[j]) == sum)
                    count++;

        Console.WriteLine("Count of pairs is " + count);
    }

    // Driver Code
    static public void Main()
    {
        int[] arr = { 1, 5, 7, -1, 5 };
        int sum = 6;
        getPairsCount(arr, sum);
    }
}

// This code is contributed
// by Sach_Code
Javascript
<script>

// Javascript implementation of simple method to find count of
// pairs with given sum.

// Returns number of pairs in arr[0..n-1] with sum equal
// to 'sum'
function getPairsCount(arr, n, sum)
{
    let count = 0; // Initialize result

    // Consider all possible pairs and check their sums
    for (let i = 0; i < n; i++)
        for (let j = i + 1; j < n; j++)
            if (arr[i] + arr[j] == sum)
                count++;

    return count;
}

// Driver function to test the above function
    let arr = [ 1, 5, 7, -1, 5 ];
    let n = arr.length;
    let sum = 6;
    document.write("Count of pairs is "
        + getPairsCount(arr, n, sum));
    
// This code is contributed by Mayank Tyagi

</script>
PHP
<?php
// PHP implementation of simple 
// method to find count of
// pairs with given sum.

// Returns number of pairs in 
// arr[0..n-1] with sum equal
// to 'sum'
function getPairsCount($arr, $n, $sum)
{
    // Initialize result
    $count = 0; 

    // Consider all possible pairs 
    // and check their sums
    for ($i = 0; $i < $n; $i++)
        for ($j = $i + 1; $j < $n; $j++)
            if ($arr[$i] + $arr[$j] == $sum)
                $count++;

    return $count;
}

    // Driver Code
    $arr = array(1, 5, 7, -1, 5) ;
    $n = sizeof($arr);
    $sum = 6;
    echo "Count of pairs is "
         , getPairsCount($arr, $n, $sum);
         
// This code is contributed by nitin mittal.
?>
Python3
# Python3 implementation of simple method
# to find count of pairs with given sum.

# Returns number of pairs in arr[0..n-1]
# with sum equal to 'sum'


def getPairsCount(arr, n, K):

    count = 0  # Initialize result

    # Consider all possible pairs
    # and check their sums
    for i in range(0, n):
        for j in range(i + 1, n):
            if arr[i] + arr[j] == K:
                count += 1

    return count


# Driver function
arr = [1, 5, 7, -1]
n = len(arr)
K = 6
print("Count of pairs is",
      getPairsCount(arr, n, K))

# This code is contributed by Smitha Dinesh Semwal

Output
Count of pairs is 2

Time Complexity: O(n2), traversing the array for each element
Auxiliary Space: O(1)

Count pairs with given sum using Binary Search.

If the array is sorted then for each array element , we can find the number of pairs by searching all the values (K – arr[i]) which are situated after ith index using Binary Search.

Illustration:

Given arr[ ] = {1, 5, 7, -1} and K = 6

  • sort the array = {-1,1,5,7}
  • initialize count = 0
  • At index = 0:
    • val = K – arr[0] = 6 – (-1) = 7
    • count = count + upperBound(1, 3, 7) – lowerBound(1, 3, 7)
    • count = 1
  • At index = 1:
    • val = K – arr[1] = 6 – 1 = 5
    • count = count + upperBound(2, 3, 5) – lowerBound(2, 3, 5)
    • count = 2
  • At index = 2:
    • val = K – arr[2] = 6 – 5 = 1
    • count = count + upperBound(3, 3, 1) – lowerBound(3, 3, 1)
    • count = 2
  • Number of pairs = 2

Follow the steps below to solve the given problem:

  • Sort the array arr[] in increasing order.
  • Loop from i = 0 to N-1.
    • Find the index of the first element having value same or just greater than (K – arr[i]) using lower bound.
    • Find the index of the first element having value just greater than (K – arr[i]) using upper bound.
    • The gap between these two indices is the number of elements with value same as (K – arr[i]).
    • Add this with the final count of pairs.
  • Return the final count after the iteration is over.

Below is the implementation of the above approach.

C++
// C++ code to implement the approach

#include <bits/stdc++.h>
using namespace std;

// Function to find the count of pairs
int getPairsCount(int arr[], int n, int k)
{
    sort(arr, arr + n);
    int x = 0, c = 0, y, z;
    for (int i = 0; i < n - 1; i++) {
        x = k - arr[i];

        // Lower bound from i+1
        int y = lower_bound(arr + i + 1, arr + n, x) - arr;

        // Upper bound from i+1
        int z = upper_bound(arr + i + 1, arr + n, x) - arr;
        c = c + z - y;
    }
    return c;
}

// Driver code
int main()
{
    int arr[] = { 1, 5, 7, -1 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 6;

    // Function call
    cout << "Count of pairs is "
         << getPairsCount(arr, n, k);
    return 0;
}
Java
// Java code for the above approach
import java.io.*;
import java.util.*;

class GFG {

  // lowerBound implementation
  public static int lowerBound(int[] arr, int start,
                               int end, int key)
  {
    while (start < end) {
      int mid = start + (end - start) / 2;
      if (arr[mid] < key) {
        start = mid + 1;
      }
      else {
        end = mid;
      }
    }
    return start;
  }

  // upperBound implementation
  public static int upperBound(int[] arr, int start,
                               int end, int key)
  {
    while (start < end) {
      int mid = start + (end - start) / 2;
      if (arr[mid] <= key) {
        start = mid + 1;
      }
      else {
        end = mid;
      }
    }
    return start;
  }

  // Function to find the count of pairs
  public static int getPairsCount(int[] arr, int n, int k)
  {
    Arrays.sort(arr);
    int c = 0;
    for (int i = 0; i < n - 1; i++) {
      int x = k - arr[i];
      int y = lowerBound(arr, i + 1, n, x);
      int z = upperBound(arr, i + 1, n, x);
      c = c + z - y;
    }
    return c;
  }

  public static void main(String[] args)
  {
    int[] arr = { 1, 5, 7, -1};
    int n = arr.length;
    int k = 6;

    // Function call
    System.out.println("Count of pairs is "
                       + getPairsCount(arr, n, k));
  }
}

// This code is contributed by lokeshmvs21.
C#
// C# code for the above approach

using System;
using System.Collections;

public class GFG {

    // lowerBound implementation
    public static int lowerBound(int[] arr, int start,
                                 int end, int key)
    {
        while (start < end) {
            int mid = start + (end - start) / 2;
            if (arr[mid] < key) {
                start = mid + 1;
            }
            else {
                end = mid;
            }
        }
        return start;
    }

    // upperBound implementation
    public static int upperBound(int[] arr, int start,
                                 int end, int key)
    {
        while (start < end) {
            int mid = start + (end - start) / 2;
            if (arr[mid] <= key) {
                start = mid + 1;
            }
            else {
                end = mid;
            }
        }
        return start;
    }

    // Function to find the count of pairs
    public static int getPairsCount(int[] arr, int n, int k)
    {
        Array.Sort(arr);
        int c = 0;
        for (int i = 0; i < n - 1; i++) {
            int x = k - arr[i];
            int y = lowerBound(arr, i + 1, n, x);
            int z = upperBound(arr, i + 1, n, x);
            c = c + z - y;
        }
        return c;
    }

    static public void Main()
    {

        // Code
        int[] arr = { 1, 5, 7, -1};
        int n = arr.Length;
        int k = 6;

        // Function call
        Console.WriteLine("Count of pairs is "
                          + getPairsCount(arr, n, k));
    }
}

// This code is contributed by lokesh.
Javascript
// JavaScript code for the above approach

// lowerBound implementation
function lowerBound(arr, start, end, key) {
  while (start < end) {
    var mid = start + Math.floor((end - start) / 2);
    if (arr[mid] < key) {
      start = mid + 1;
    } else {
      end = mid;
    }
  }
  return start;
}

// upperBound implementation
function upperBound(arr, start, end, key) {
  while (start < end) {
    var mid = start + Math.floor((end - start) / 2);
    if (arr[mid] <= key) {
      start = mid + 1;
    } else {
      end = mid;
    }
  }
  return start;
}

// Function to find the count of pairs
function getPairsCount(arr, n, k) {
  arr.sort((a, b) => a - b);
  var c = 0;
  for (var i = 0; i < n - 1; i++) {
    var x = k - arr[i];
    var y = lowerBound(arr, i + 1, n, x);
    var z = upperBound(arr, i + 1, n, x);
    c = c + z - y;
  }
  return c;
}

var arr = [1, 5, 7, -1];
var n = arr.length;
var k = 6;

// Function call
console.log("Count of pairs is " + getPairsCount(arr, n, k));
Python3
# Python code to implement the approach
import bisect

# Function to find the count of pairs


def getPairsCount(arr, n, k):
    arr.sort()
    x, c = 0, 0
    for i in range(n-1):
        x = k-arr[i]

        # Lower bound from i+1
        y = bisect.bisect_left(arr, x, i+1, n)

        # Upper bound from i+1
        z = bisect.bisect(arr, x, i+1, n)
        c = c+z-y
    return c


# Driver function
arr = [1, 5, 7, -1]
n = len(arr)
k = 6

# Function call
print("Count of pairs is", getPairsCount(arr, n, k))

# This code is contributed by Pushpesh Raj

Output
Count of pairs is 2

Time Complexity: O(n * log(n) ), applying binary search on each element
Auxiliary Space: O(1)

Count pairs with given sum using Hashing

  • Check the frequency of K – arr[i] in the arr
  • This can be achieved using Hashing.

Illustration:

Given arr[] = {1, 5, 7, -1} and K = 6

  • initialize count = 0
  • At index = 0:
    • freq[K – arr[0]] = freq[6 – 1] = freq[5] = 0
    • count = 0
    • freq[arr[0]] = freq[1] = 1
  • At index = 1:
    • freq[K – arr[1]] = freq[6 – 5] = freq[1] = 1
    • count = 1
    • freq[arr[1]] = freq[5] = 1
  • At index = 2:
    • freq[K – arr[2]] = freq[6 – 7] = freq[-1] = 0
    • count = 1
    • freq[arr[2]] = freq[7] = 1
  • At index = 3:
    • freq[K – arr[3]] = freq[6 – (-1)] = freq[7] = 1
    • count = 2
    • freq[arr[3]] = freq[-1] = 1
  • Number of pairs  = 2

Follow the steps below to solve the given problem: 

  • Create a map to store the frequency of each number in the array.
  • Check if (K – arr[i]) is present in the map, if present then increment the count variable by its frequency.
  • After traversal is over, return the count.

Below is the implementation of the above idea : 

C++
// C++ implementation of simple method to
//  find count of pairs with given sum.
#include <bits/stdc++.h>
using namespace std;

// Returns number of pairs in arr[0..n-1] with sum equal
// to 'sum'
int getPairsCount(int arr[], int n, int k)
{
    unordered_set<int> s;
    int count = 0;
    for (int i = 0; i < n; i++) {
        if (s.find(k - arr[i]) != s.end()) {
            count++;
        }
        else
          s.insert(k-arr[i]);
    }
    return count;
}

// Driver code
int main()
{
    int arr[] = { 1, 5, 7, -1};
    int n = sizeof(arr) / sizeof(arr[0]);
    int sum = 6;

    // Function Call
    cout << "Count of pairs is "
         << getPairsCount(arr, n, sum);
    return 0;
}
Java
// Java implementation of simple method to find count of
// pairs with given sum.
import java.util.*;

class GFG {

    // Returns number of pairs in arr[0..n-1] with sum equal
    // to 'sum'
    static int getPairsCount(int arr[], int n, int k)
    {
        HashMap<Integer, Integer> m = new HashMap<>();
        int count = 0;
        for (int i = 0; i < n; i++) {
            if (m.containsKey(k - arr[i])) {
                count += m.get(k - arr[i]);
            }
            if (m.containsKey(arr[i])) {
                m.put(arr[i], m.get(arr[i]) + 1);
            }
            else {
                m.put(arr[i], 1);
            }
        }
        return count;
    }

    // Driver function to test the above function
    public static void main(String[] args)
    {
        int arr[] = { 1, 5, 7, -1};
        int n = arr.length;
        int sum = 6;
        System.out.print("Count of pairs is "
                         + getPairsCount(arr, n, sum));
    }
}

// This code is contributed by umadevi9616
C#
// C# implementation of simple method to find count of
// pairs with given sum.
using System;
using System.Collections.Generic;

public class GFG {

    // Returns number of pairs in arr[0..n-1] with sum equal
    // to 'sum'
    static int getPairsCount(int[] arr, int n, int k)
    {
        Dictionary<int, int> m = new Dictionary<int, int>();
        int count = 0;
        for (int i = 0; i < n; i++) {
            if (m.ContainsKey(k - arr[i])) {
                count += m[k - arr[i]];
            }
            if (m.ContainsKey(arr[i])) {
                m[arr[i]] = m[arr[i]] + 1;
            }
            else {
                m.Add(arr[i], 1);
            }
        }
        return count;
    }

    // Driver function to test the above function
    public static void Main(String[] args)
    {
        int[] arr = { 1, 5, 7, -1 };
        int n = arr.Length;
        int sum = 6;
        Console.Write("Count of pairs is "
                      + getPairsCount(arr, n, sum));
    }
}

// This code is contributed by umadevi9616
Javascript
<script>
// javascript implementation of simple method to find count of
// pairs with given sum.

    // Returns number of pairs in arr[0..n-1] with sum equal
    // to 'sum'
    function getPairsCount(arr , n , k) {
        var m = new Map();
        var count = 0;
        for (var i = 0; i < n; i++) {
            if (m.has(k - arr[i])) {
                count += m.get(k - arr[i]);
            }
            if (m.has(arr[i])) {
                m.set(arr[i], m.get(arr[i]) + 1);
            } else {
                m.set(arr[i], 1);
            }
        }
        return count;
    }

    // Driver function to test the above function
        var arr = [ 1, 5, 7, -1 ];
        var n = arr.length;
        var sum = 6;
        document.write("Count of pairs is " + getPairsCount(arr, n, sum));

// This code is contributed by umadevi9616
</script>
Python3
# Python implementation of simple method to find count of
# pairs with given sum.

# Returns number of pairs in arr[0..n-1] with sum equal to 'sum'


def getPairsCount(arr, n, sum):
    unordered_map = {}
    count = 0
    for i in range(n):
        if sum - arr[i] in unordered_map:
            count += unordered_map[sum - arr[i]]
        if arr[i] in unordered_map:
            unordered_map[arr[i]] += 1
        else:
            unordered_map[arr[i]] = 1
    return count


# Driver code
arr = [1, 5, 7, -1]
n = len(arr)
sum = 6
print('Count of pairs is', getPairsCount(arr, n, sum))

# This code is contributed by Manish Thapa

Output
Count of pairs is 2

Time Complexity: O(n), to iterate over the array
Auxiliary Space: O(n), to make a map of size n



Previous Article
Next Article

Similar Reads

Count of pairs {X, Y} from an array such that sum of count of set bits in X ⊕ Y and twice the count of set bits in X &amp; Y is M
Given an array arr[] consisting of N non-negative integers and an integer M, the task is to find the count of unordered pairs {X, Y} of array elements that satisfies the condition setBits(X ⊕ Y) + 2 * setBits(X &amp; Y) = M, where ⊕ denotes the Bitwise XOR and &amp; denotes the Bitwise AND. Examples: Input: arr[] = {30, 0, 4, 5 }, M = 2Output: 2Exp
14 min read
Count new pairs of strings that can be obtained by swapping first characters of pairs of strings from given array
Given an array arr[] consisting of N strings, the task is to find the pair of strings that is not present in the array formed by any pairs (arr[i], arr[j]) by swapping the first characters of the strings arr[i] and arr[j]. Examples: Input: arr[] = {"good", "bad", "food"}Output: 2Explanation:The possible pairs that can be formed by swapping the firs
13 min read
Count of pairs in a given range with sum of their product and sum equal to their concatenated number
Given two numbers A and B, the task is to find the count of pairs (X, Y) in range [A, B], such that (X * Y) + (X + Y) is equal to the number formed by concatenation of X and YExamples: Input: A = 1, B = 9 Output: 9 Explanation: The pairs (1, 9), (2, 9), (3, 9), (4, 9), (5, 9), (6, 9), (7, 9), (8, 9) and (9, 9) are the required pairs.Input: A = 4, B
5 min read
Count pairs from a given array whose sum lies from a given range
Given an array arr[] consisting of N integers and two integers L and R, the task is to count the number of pairs whose sum lies in the range [L, R]. Examples: Input: arr[] = {5, 1, 2}, L = 4, R = 7Output: 2Explanation:The pairs satisfying the necessary conditions are as follows: (5, 1): Sum = 5 + 1 = 6, which lies in the range [4, 7].(5, 2): Sum =
13 min read
Count ways to remove pairs from a matrix such that remaining elements can be grouped in vertical or horizontal pairs
Given an integer K and a square matrix mat[][] of size N * N with elements from the range[1, K], the task is to count ways to remove pairs of distinct matrix elements such that remaining elements can be arranged in pairs vertically or horizontally. Examples: Input: mat[][] = {{1, 2}, {3, 4}}, K = 4Output: 4Explanation:Remove the row {1, 2}. Therefo
10 min read
Maximize count of pairs whose Bitwise AND exceeds Bitwise XOR by replacing such pairs with their Bitwise AND
Given an array arr[] consisting of N positive integers, replace pairs of array elements whose Bitwise AND exceeds Bitwise XOR values by their Bitwise AND value. Finally, count the maximum number of such pairs that can be generated from the array. Examples: Input: arr[] = {12, 9, 15, 7}Output: 2Explanation:Step 1: Select the pair {12, 15} and replac
9 min read
Maximize count of pairs whose bitwise XOR is even by replacing such pairs with their Bitwise XOR
Given an array arr[] of size N, the task is to replace a pair of array elements whose Bitwise XOR is even by their Bitwise XOR. Repeat the above step as long as possible. Finally, print the count of such operations performed on the array Examples: Input: arr[] = { 4, 6, 1, 3 }Output: 3Explanation:Step 1: Remove the pair (4, 6) and replace them by t
11 min read
Maximum count of pairs such that element at each index i is included in i pairs
Given an array arr[] and an integer N, the task is to find the maximum number of pairs that can be formed such that ith index is included in almost arr[i] pairs. Examples: Input: arr[] = {2, 2, 3, 4} Output: 51 32 42 43 43 4Explanation: For the given array, a maximum of 5 pairs can be created where 1st index is included in 1 pair, 2nd index in 2 pa
6 min read
Minimize sum of absolute difference between all pairs of array elements by decrementing and incrementing pairs by 1
Given an array arr[] ( 1-based indexing ) consisting of N integers, the task is to find the minimum sum of the absolute difference between all pairs of array elements by decrementing and incrementing any pair of elements by 1 any number of times. Examples: Input: arr[] = {1, 2, 3}Output: 0Explanation:Modify the array elements by performing the foll
5 min read
Generate pairs in range [0, N-1] with sum of bitwise AND of all pairs K
Given an integer N (which is always a power of 2) denoting the length of an array which contains integers in range [0, N-1] exactly once, the task is to pair up these elements in a way such that the sum of AND of the pair is equal to K. i.e ∑ (ai &amp; bi) = K. Note: Each element can be part of only one pair. Examples: Input: N = 4, K = 2Output: [[
10 min read
Article Tags :
Practice Tags :