Open In App

Maximum possible difference of two subsets of an array

Last Updated : 24 Mar, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

Given an array of n-integers. The array may contain repetitive elements but the highest frequency of any element must not exceed two. You have to make two subsets such that the difference of the sum of their elements is maximum and both of them jointly contain all elements of the given array along with the most important condition, no subset should contain repetitive elements. 

Examples: 

Input : arr[] = {5, 8, -1, 4}
Output : Maximum Difference = 18
Explanation : 
Let Subset A = {5, 8, 4} & Subset B = {-1}
Sum of elements of subset A = 17, of subset B = -1
Difference of Sum of Both subsets = 17 - (-1) = 18

Input : arr[] = {5, 8, 5, 4}
Output : Maximum Difference = 12
Explanation : 
Let Subset A = {5, 8, 4} & Subset B = {5}
Sum of elements of subset A = 17, of subset B = 5
Difference of Sum of Both subsets = 17 - 5 = 12

Before solving this question we have to take care of some given conditions, and they are listed as: 

  • While building up the subsets, take care that no subset should contain repetitive elements. And for this, we can conclude that all such elements whose frequency are 2, going to be part of both subsets, and hence overall they don’t have any impact on the difference of subset-sum. So, we can easily ignore them.
  • For making the difference of the sum of elements of both subset maximum we have to make subset in such a way that all positive elements belong to one subset and negative ones to other subsets.

Algorithm with time complexity O(n2): 

for i=0 to n-1
    isSingleOccurrence = true;
    for  j= i+1 to n-1

        // if frequency of any element is two
        // make both equal to zero
        if arr[i] equals arr[j]
            arr[i] = arr[j] = 0
            isSingleOccurrence = false;
            break;
            
    if isSingleOccurrence == true
        if (arr[i] > 0)
            SubsetSum_1 += arr[i];
        else 
            SubsetSum_2 += arr[i];
return abs(SubsetSum_1 - SubsetSum2)

Implementation:

C++




// CPP find maximum difference of subset sum
#include <bits/stdc++.h>
using namespace std;
  
// function for maximum subset diff
int maxDiff(int arr[], int n)
{
    int SubsetSum_1 = 0, SubsetSum_2 = 0;
    for (int i = 0; i <= n - 1; i++) {
  
        bool isSingleOccurrence = true;
        for (int j = i + 1; j <= n - 1; j++) {
  
            // if frequency of any element is two
            // make both equal to zero
            if (arr[i] == arr[j]) {
                isSingleOccurrence = false;
                arr[i] = arr[j] = 0;
                break;
            }
        }
        if (isSingleOccurrence) {
            if (arr[i] > 0)
                SubsetSum_1 += arr[i];
            else
                SubsetSum_2 += arr[i];
        }
    }
    return abs(SubsetSum_1 - SubsetSum_2);
}
  
// driver program
int main()
{
    int arr[] = { 4, 2, -3, 3, -2, -2, 8 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << "Maximum Difference = " << maxDiff(arr, n);
    return 0;
}


Java




// java find maximum difference
// of subset sum
import java .io.*;
  
public class GFG {
      
    // function for maximum subset diff
    static int maxDiff(int []arr, int n)
    {
        int SubsetSum_1 = 0, SubsetSum_2 = 0;
        for (int i = 0; i <= n - 1; i++)
        {
            boolean isSingleOccurrence = true;
            for (int j = i + 1; j <= n - 1; j++)
            {
      
                // if frequency of any element
                // is two make both equal to
                // zero
                if (arr[i] == arr[j])
                {
                    isSingleOccurrence = false;
                    arr[i] = arr[j] = 0;
                    break;
                }
            }
            if (isSingleOccurrence)
            {
                if (arr[i] > 0)
                    SubsetSum_1 += arr[i];
                else
                    SubsetSum_2 += arr[i];
            }
        }
          
        return Math.abs(SubsetSum_1 - SubsetSum_2);
    }
      
    // driver program
    static public void main (String[] args)
    {
        int []arr = { 4, 2, -3, 3, -2, -2, 8 };
        int n = arr.length;
          
        System.out.println("Maximum Difference = "
                               + maxDiff(arr, n));
    }
}
  
// This code is contributed by vt_m.


Python3




# Python3 find maximum difference
# of subset sum
  
import math
  
# function for maximum subset diff
def maxDiff(arr, n) :
    SubsetSum_1 = 0
    SubsetSum_2 = 0
    for i in range(0, n) :
  
        isSingleOccurrence = True
        for j in range(i + 1, n) :
  
            # if frequency of any element
            # is two make both equal to 
            # zero
            if (arr[i] == arr[j]) : 
                isSingleOccurrence = False
                arr[i] = arr[j] = 0
                break
  
        if (isSingleOccurrence == True) :
            if (arr[i] > 0) :
                SubsetSum_1 += arr[i]
            else :
                SubsetSum_2 += arr[i]
  
    return abs(SubsetSum_1 - SubsetSum_2)
  
# Driver Code
arr = [4, 2, -3, 3, -2, -2, 8]
n = len(arr)
print ("Maximum Difference = {}"
               . format(maxDiff(arr, n)))
  
# This code is contributed by Manish Shaw
# (manishshaw1)


C#




// C# find maximum difference of
// subset sum
using System;
  
public class GFG {
      
    // function for maximum subset diff
    static int maxDiff(int []arr, int n)
    {
        int SubsetSum_1 = 0, SubsetSum_2 = 0;
        for (int i = 0; i <= n - 1; i++)
        {
      
            bool isSingleOccurrence = true;
            for (int j = i + 1; j <= n - 1; j++)
            {
      
                // if frequency of any element
                // is two make both equal to
                // zero
                if (arr[i] == arr[j])
                {
                    isSingleOccurrence = false;
                    arr[i] = arr[j] = 0;
                    break;
                }
            }
            if (isSingleOccurrence)
            {
                if (arr[i] > 0)
                    SubsetSum_1 += arr[i];
                else
                    SubsetSum_2 += arr[i];
            }
        }
          
        return Math.Abs(SubsetSum_1 - SubsetSum_2);
    }
      
    // driver program
    static public void Main ()
    {
        int []arr = { 4, 2, -3, 3, -2, -2, 8 };
        int n = arr.Length;
          
        Console.WriteLine("Maximum Difference = "
                              + maxDiff(arr, n));
    }
}
  
// This code is contributed by vt_m.


PHP




<?php
// PHP find maximum difference
// of subset sum
  
// function for maximum subset diff
function maxDiff($arr, $n)
{
    $SubsetSum_1 = 0;
    $SubsetSum_2 = 0;
    for ($i = 0; $i <= $n - 1; $i++)
    {
  
        $isSingleOccurrence = true;
        for ($j = $i + 1; $j <= $n - 1; $j++)
        {
  
            // if frequency of any element is two
            // make both equal to zero
            if ($arr[$i] == $arr[$j]) 
            {
                $isSingleOccurrence = false;
                $arr[$i] = $arr[$j] = 0;
                break;
            }
        }
        if ($isSingleOccurrence
        {
            if ($arr[$i] > 0)
                $SubsetSum_1 += $arr[$i];
            else
                $SubsetSum_2 += $arr[$i];
        }
    }
    return abs($SubsetSum_1 - $SubsetSum_2);
}
  
    // Driver Code
    $arr = array(4, 2, -3, 3, -2, -2, 8);
    $n = sizeof($arr);
    echo "Maximum Difference = " , maxDiff($arr, $n);
  
// This code is contributed by nitin mittal
?>


Javascript




<script>
  
// JavaScript Program to find maximum difference
// of subset sum
  
    // function for maximum subset diff
    function maxDiff(arr, n)
    {
        let SubsetSum_1 = 0, SubsetSum_2 = 0;
        for (let i = 0; i <= n - 1; i++)
        {
            let isSingleOccurrence = true;
            for (let j = i + 1; j <= n - 1; j++)
            {
       
                // if frequency of any element
                // is two make both equal to
                // zero
                if (arr[i] == arr[j])
                {
                    isSingleOccurrence = false;
                    arr[i] = arr[j] = 0;
                    break;
                }
            }
            if (isSingleOccurrence)
            {
                if (arr[i] > 0)
                    SubsetSum_1 += arr[i];
                else
                    SubsetSum_2 += arr[i];
            }
        }
           
        return Math.abs(SubsetSum_1 - SubsetSum_2);
    }
       
  
// Driver program
  
        let arr = [ 4, 2, -3, 3, -2, -2, 8 ];
        let n = arr.length;
           
        document.write("Maximum Difference = "
                               + maxDiff(arr, n));
          
        // This code is contributed by susmitakundugoaldanga.
</script>


Output

Maximum Difference = 20

Time Complexity O(n2)
Auxiliary Space: O(1)

Algorithm with time complexity O(n log n): 

-> sort the array
-> for i =0 to n-2
      // consecutive two elements are not equal
      // add absolute arr[i] to result
      if arr[i] != arr[i+1]
          result += abs(arr[i])
      // else skip next element too
      else
          i++;
          
// special check for last two elements
-> if (arr[n-2] != arr[n-1])
    result += arr[n-1]

-> return result;

Implementation:

C++




// CPP find maximum difference of subset sum
#include <bits/stdc++.h>
using namespace std;
  
// function for maximum subset diff
int maxDiff(int arr[], int n)
{
    int result = 0;
  
    // sort the array
    sort(arr, arr + n);
  
    // calculate the result
    for (int i = 0; i < n - 1; i++) {
        if (arr[i] != arr[i + 1])
            result += abs(arr[i]);
        else
            i++;
    }
  
    // check for last element
    if (arr[n - 2] != arr[n - 1])
        result += abs(arr[n - 1]);
  
    // return result
    return result;
}
  
// driver program
int main()
{
    int arr[] = { 4, 2, -3, 3, -2, -2, 8 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << "Maximum Difference = " << maxDiff(arr, n);
    return 0;
}


Java




// java find maximum difference of
// subset sum
import java. io.*;
import java .util.*;
  
public class GFG {
  
    // function for maximum subset diff
    static int maxDiff(int []arr, int n)
    {
        int result = 0;
      
        // sort the array
        Arrays.sort(arr);
      
        // calculate the result
        for (int i = 0; i < n - 1; i++)
        {
            if (arr[i] != arr[i + 1])
                result += Math.abs(arr[i]);
            else
                i++;
        }
      
        // check for last element
        if (arr[n - 2] != arr[n - 1])
            result += Math.abs(arr[n - 1]);
      
        // return result
        return result;
    }
      
    // driver program
    static public void main (String[] args)
    {
        int[] arr = { 4, 2, -3, 3, -2, -2, 8 };
        int n = arr.length;
          
        System.out.println("Maximum Difference = "
                                + maxDiff(arr, n));
    }
}
  
// This code is contributed by vt_m.


Python 3




# Python 3 find maximum difference 
# of subset sum
  
# function for maximum subset diff
def maxDiff(arr, n):
  
    result = 0
  
    # sort the array
    arr.sort()
  
    # calculate the result
    for i in range(n - 1):
        if (abs(arr[i]) != abs(arr[i + 1])):
            result += abs(arr[i])
  
        else:
            pass
  
    # check for last element
    if (arr[n - 2] != arr[n - 1]):
        result += abs(arr[n - 1])
  
    # return result
    return result
  
# Driver Code
if __name__ == "__main__":
      
    arr = [ 4, 2, -3, 3, -2, -2, 8 ]
    n = len(arr)
    print("Maximum Difference = " ,
                   maxDiff(arr, n))
  
# This code is contributed by ita_c


C#




// C# find maximum difference
// of subset sum
using System;
  
public class GFG {
  
    // function for maximum subset diff
    static int maxDiff(int []arr, int n)
    {
        int result = 0;
      
        // sort the array
        Array.Sort(arr);
      
        // calculate the result
        for (int i = 0; i < n - 1; i++)
        {
            if (arr[i] != arr[i + 1])
                result += Math.Abs(arr[i]);
            else
                i++;
        }
      
        // check for last element
        if (arr[n - 2] != arr[n - 1])
            result += Math.Abs(arr[n - 1]);
      
        // return result
        return result;
    }
      
    // driver program
    static public void Main ()
    {
        int[] arr = { 4, 2, -3, 3, -2, -2, 8 };
        int n = arr.Length;
          
        Console.WriteLine("Maximum Difference = "
                              + maxDiff(arr, n));
    }
}
  
// This code is contributed by vt_m.


PHP




<?php
// PHP find maximum difference of subset sum
  
// function for maximum subset diff
function maxDiff( $arr, $n)
{
    $result = 0;
  
    // sort the array
    sort($arr);
  
    // calculate the result
    for ( $i = 0; $i < $n - 1; $i++) 
    {
        if ($arr[$i] != $arr[$i + 1])
            $result += abs($arr[$i]);
        else
            $i++;
    }
  
    // check for last element
    if ($arr[$n - 2] != $arr[$n - 1])
        $result += abs($arr[$n - 1]);
  
    // return result
    return $result;
}
  
    // Driver Code
    $arr = array( 4, 2, -3, 3, -2, -2, 8 );
    $n = count($arr);
    echo "Maximum Difference = " 
        , maxDiff($arr, $n);
          
// This code is contributed by anuj_67.
?>


Javascript




<script>
  
// Javascript find maximum difference of subset sum
  
// function for maximum subset diff
function maxDiff(arr, n)
{
    var result = 0;
  
    // sort the array
    arr.sort((a,b)=> a-b)
  
    // calculate the result
    for (var i = 0; i < n - 1; i++) {
        if (arr[i] != arr[i + 1])
            result += Math.abs(arr[i]);
        else
            i++;
    }
  
    // check for last element
    if (arr[n - 2] != arr[n - 1])
        result += Math.abs(arr[n - 1]);
  
    // return result
    return result;
}
  
// driver program
var arr = [ 4, 2, -3, 3, -2, -2, 8 ];
var n = arr.length;
document.write( "Maximum Difference = " + maxDiff(arr, n));
  
</script>


Output

Maximum Difference = 20

Time Complexity: O(n log n)
Auxiliary Space: O(1)

Algorithm with time complexity O(n): 

make hash table for positive elements:
    for all positive elements(arr[i])
        if frequency == 1
            SubsetSum_1 += arr[i];
make hash table for negative elements:
    for all negative elements
        if frequency == 1
            SubsetSum_2 += arr[i];
return abs(SubsetSum_1 - SubsetSum2)

Implementation:

C++




// CPP find maximum difference of subset sum
#include <bits/stdc++.h>
using namespace std;
  
// function for maximum subset diff
int maxDiff(int arr[], int n)
{
    unordered_map<int, int> hashPositive;
    unordered_map<int, int> hashNegative;
  
    int SubsetSum_1 = 0, SubsetSum_2 = 0;
  
    // construct hash for positive elements
    for (int i = 0; i <= n - 1; i++)
        if (arr[i] > 0)
            hashPositive[arr[i]]++;
  
    // calculate subset sum for positive elements
    for (int i = 0; i <= n - 1; i++)
        if (arr[i] > 0 && hashPositive[arr[i]] == 1)
            SubsetSum_1 += arr[i];
  
    // construct hash for negative elements
    for (int i = 0; i <= n - 1; i++)
        if (arr[i] < 0)
            hashNegative[abs(arr[i])]++;
  
    // calculate subset sum for negative elements
    for (int i = 0; i <= n - 1; i++)
        if (arr[i] < 0 && 
            hashNegative[abs(arr[i])] == 1)
            SubsetSum_2 += arr[i];
  
    return abs(SubsetSum_1 - SubsetSum_2);
}
  
// driver program
int main()
{
    int arr[] = { 4, 2, -3, 3, -2, -2, 8 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << "Maximum Difference = " << maxDiff(arr, n);
    return 0;
}


Java




// Java find maximum 
// difference of subset sum 
import java.util.*;
class GFG{
    
// Function for maximum subset diff 
public static int maxDiff(int arr[], 
                          int n) 
  HashMap<Integer, 
          Integer> hashPositive = new HashMap<>();
  HashMap<Integer, 
          Integer> hashNegative = new HashMap<>(); 
  
  int SubsetSum_1 = 0
      SubsetSum_2 = 0
  
  // Construct hash for 
  // positive elements 
  for (int i = 0; i <= n - 1; i++) 
  {
    if (arr[i] > 0
    {
      if(hashPositive.containsKey(arr[i]))
      {
        hashPositive.replace(arr[i], 
        hashPositive.get(arr[i]) + 1);
      }
      else
      {
        hashPositive.put(arr[i], 1);
      }
    }
  }
  
  // Calculate subset sum 
  // for positive elements 
  for (int i = 0; i <= n - 1; i++) 
  {
    if(arr[i] > 0 && 
       hashPositive.containsKey(arr[i]))
    {
      if(hashPositive.get(arr[i]) == 1)
      {
        SubsetSum_1 += arr[i];
      }
    }
  }
  
  // Construct hash for 
  // negative elements 
  for (int i = 0; i <= n - 1; i++) 
  {
    if (arr[i] < 0)
    {
      if(hashNegative.containsKey(Math.abs(arr[i])))
      {
        hashNegative.replace(Math.abs(arr[i]), 
        hashNegative.get(Math.abs(arr[i])) + 1);
      }
      else
      {
        hashNegative.put(Math.abs(arr[i]), 1);
      }
    }
  }
  
  // Calculate subset sum for
  // negative elements 
  for (int i = 0; i <= n - 1; i++) 
  {
    if (arr[i] < 0 && 
        hashNegative.containsKey(Math.abs(arr[i])))
    {
      if(hashNegative.get(Math.abs(arr[i])) == 1)
      {
        SubsetSum_2 += arr[i]; 
      }
    }
  }
  
  return Math.abs(SubsetSum_1 - SubsetSum_2); 
  
// Driver code
public static void main(String[] args) 
{
  int arr[] = {4, 2, -3, 3
               -2, -2, 8}; 
  int n = arr.length;
  System.out.print("Maximum Difference = "
                    maxDiff(arr, n));
}
}
  
// This code is contributed by divyeshrabadiya07


Python3




# Python3 find maximum difference of subset sum
  
# function for maximum subset diff
def maxDiff(arr, n):
  
    hashPositive = dict()
    hashNegative = dict()
  
    SubsetSum_1, SubsetSum_2 = 0, 0
  
    # construct hash for positive elements
    for i in range(n):
        if (arr[i] > 0):
            hashPositive[arr[i]] = \
                hashPositive.get(arr[i], 0) + 1
  
    # calculate subset sum for positive elements
    for i in range(n):
        if (arr[i] > 0 and arr[i] in 
            hashPositive.keys() and 
            hashPositive[arr[i]] == 1):
            SubsetSum_1 += arr[i]
  
    # construct hash for negative elements
    for i in range(n):
        if (arr[i] < 0):
            hashNegative[abs(arr[i])] = \
                hashNegative.get(abs(arr[i]), 0) + 1
  
    # calculate subset sum for negative elements
    for i in range(n):
        if (arr[i] < 0 and abs(arr[i]) in 
            hashNegative.keys() and 
            hashNegative[abs(arr[i])] == 1):
            SubsetSum_2 += arr[i]
  
    return abs(SubsetSum_1 - SubsetSum_2)
  
# Driver Code
arr = [4, 2, -3, 3, -2, -2, 8]
n = len(arr)
print("Maximum Difference =", maxDiff(arr, n))
  
# This code is contributed by mohit kumar


C#




// C# find maximum 
// difference of subset sum 
using System;
using System.Collections.Generic;
  
class GFG {
  
    // Function for maximum subset diff 
    static int maxDiff(int[] arr, int n) 
    
      Dictionary<int, int> hashPositive = 
        new Dictionary<int, int>();
      Dictionary<int, int> hashNegative = 
        new Dictionary<int, int>();
       
      int SubsetSum_1 = 0, SubsetSum_2 = 0; 
       
      // Construct hash for 
      // positive elements 
      for (int i = 0; i <= n - 1; i++) 
      {
        if (arr[i] > 0) 
        {
          if(hashPositive.ContainsKey(arr[i]))
          {
            hashPositive[arr[i]] += 1;
          }
          else
          {
            hashPositive.Add(arr[i], 1);
          }
        }
      }
       
      // Calculate subset sum 
      // for positive elements 
      for (int i = 0; i <= n - 1; i++) 
      {
        if(arr[i] > 0 && hashPositive.ContainsKey(arr[i]))
        {
          if(hashPositive[arr[i]] == 1)
          {
            SubsetSum_1 += arr[i];
          }
        }
      }
       
      // Construct hash for 
      // negative elements 
      for (int i = 0; i <= n - 1; i++) 
      {
        if (arr[i] < 0)
        {
          if(hashNegative.ContainsKey(Math.Abs(arr[i])))
          {
            hashNegative[(Math.Abs(arr[i]))] += 1; 
          }
          else
          {
            hashNegative.Add(Math.Abs(arr[i]), 1);
          }
        }
      }
       
      // Calculate subset sum for
      // negative elements 
      for (int i = 0; i <= n - 1; i++) 
      {
        if (arr[i] < 0 && 
            hashNegative.ContainsKey(Math.Abs(arr[i])))
        {
          if(hashNegative[(Math.Abs(arr[i]))] == 1)
          {
            SubsetSum_2 += arr[i]; 
          }
        }
      }
       
      return Math.Abs(SubsetSum_1 - SubsetSum_2); 
    }
    
  // Driver code  
  static void Main() {
      int[] arr = {4, 2, -3, 3, -2, -2, 8}; 
      int n = arr.Length;
      Console.WriteLine("Maximum Difference = "
                        maxDiff(arr, n));
  }
}
  
// This code is contributed by divesh072019


Javascript




<script>
// Javascript find maximum
// difference of subset sum
  
// Function for maximum subset diff
function maxDiff(arr,n)
{
    let hashPositive = new Map();
  let hashNegative = new Map();
   
  let SubsetSum_1 = 0,
      SubsetSum_2 = 0;
   
  // Construct hash for
  // positive elements
  for (let i = 0; i <= n - 1; i++)
  {
    if (arr[i] > 0)
    {
      if(hashPositive.has(arr[i]))
      {
        hashPositive.set(arr[i],
        hashPositive.get(arr[i]) + 1);
      }
      else
      {
        hashPositive.set(arr[i], 1);
      }
    }
  }
   
  // Calculate subset sum
  // for positive elements
  for (let i = 0; i <= n - 1; i++)
  {
    if(arr[i] > 0 &&
       hashPositive.has(arr[i]))
    {
      if(hashPositive.get(arr[i]) == 1)
      {
        SubsetSum_1 += arr[i];
      }
    }
  }
   
  // Construct hash for
  // negative elements
  for (let i = 0; i <= n - 1; i++)
  {
    if (arr[i] < 0)
    {
      if(hashNegative.has(Math.abs(arr[i])))
      {
        hashNegative.set(Math.abs(arr[i]),
        hashNegative.get(Math.abs(arr[i])) + 1);
      }
      else
      {
        hashNegative.set(Math.abs(arr[i]), 1);
      }
    }
  }
   
  // Calculate subset sum for
  // negative elements
  for (let i = 0; i <= n - 1; i++)
  {
    if (arr[i] < 0 &&
        hashNegative.has(Math.abs(arr[i])))
    {
      if(hashNegative.get(Math.abs(arr[i])) == 1)
      {
        SubsetSum_2 += arr[i];
      }
    }
  }
   
  return Math.abs(SubsetSum_1 - SubsetSum_2);
          
}
  
// Driver code
  
let arr = [4, 2, -3, 3,
               -2, -2, 8];
let n = arr.length;
document.write("Maximum Difference = " +
                    maxDiff(arr, n));
                  
    // This code is contributed by rag2127
</script>


Output

Maximum Difference = 20

Time Complexity: O(n)
Auxiliary Space: O(n)



Previous Article
Next Article

Similar Reads

Divide array in two Subsets such that sum of square of sum of both subsets is maximum
Given an integer array arr[], the task is to divide this array into two non-empty subsets such that the sum of the square of the sum of both the subsets is maximum and sizes of both the subsets must not differ by more than 1.Examples: Input: arr[] = {1, 2, 3} Output: 26 Explanation: Sum of Subset Pairs are as follows (1)2 + (2 + 3)2 = 26 (2)2 + (1
6 min read
Maximum possible difference of sum of two subsets of an array | Set 2
Given an array arr[ ] consisting of N integers, the task is to find maximum difference between the sum of two subsets obtained by partitioning the array into any two non-empty subsets. Note: The subsets cannot any common element. A subset can contain repeating elements. Examples: Input: arr[] = {1, 3, 2, 4, 5}Output: 13Explanation: The partitions {
10 min read
Maximum number of subsets an array can be split into such that product of their minimums with size of subsets is at least K
Given an array arr[] consisting of N integers and an integer K, the task is to find the maximum number of disjoint subsets that the given array can be split into such that the product of the minimum element of each subset with the size of the subset is at least K. Examples: Input: arr[] = {7, 11, 2, 9, 5}, K = 10Output: 2Explanation:All such disjoi
8 min read
Partition an array of non-negative integers into two subsets such that average of both the subsets is equal
Given an array of size N. The task is to partition the given array into two subsets such that the average of all the elements in both subsets is equal. If no such partition exists print -1. Otherwise, print the partitions. If multiple solutions exist, print the solution where the length of the first subset is minimum. If there is still a tie then p
14 min read
Split array into maximum possible subsets having product of their length with the maximum element at least K
Given an array arr[] consisting of N integers and a positive integer K, the task is to maximize the number of subsets having a product of its size and its maximum element at least K by dividing array element into disjoint subsets. Examples: Input: N = 5, K = 4, arr[] = {1, 5, 4, 2, 3}Output: 3Explanation:The array can be split into 3 possible subse
6 min read
Smallest subset of maximum sum possible by splitting array into two subsets
Given an array arr[] consisting of N integers, the task is to print the smaller of the two subsets obtained by splitting the array into two subsets such that the sum of the smaller subset is maximized. Examples: Input: arr[] = {5, 3, 2, 4, 1, 2}Output: 4 5Explanation:Split the array into two subsets as {4, 5} and {1, 2, 2, 3}.The subset {4, 5} is o
11 min read
Find sum of difference of maximum and minimum over all possible subsets of size K
Given an array arr[] of N integers and an integer K, the task is to find the sum of the difference between the maximum and minimum elements over all possible subsets of size K. Examples: Input: arr[] = {1, 1, 3, 4}, K = 2Output: 11Explanation:There are 6 subsets of the given array of size K(= 2). They are {1, 1}, {1, 3}, {1, 4}, {1, 3}, {1, 4} and
12 min read
Sum of subsets of all the subsets of an array | O(3^N)
Given an array arr[] of length N, the task is to find the overall sum of subsets of all the subsets of the array.Examples: Input: arr[] = {1, 1} Output: 6 All possible subsets: a) {} : 0 All the possible subsets of this subset will be {}, Sum = 0 b) {1} : 1 All the possible subsets of this subset will be {} and {1}, Sum = 0 + 1 = 1 c) {1} : 1 All t
6 min read
Sum of subsets of all the subsets of an array | O(2^N)
Given an array arr[] of length N, the task is to find the overall sum of subsets of all the subsets of the array.Examples: Input: arr[] = {1, 1} Output: 6 All possible subsets: a) {} : 0 All the possible subsets of this subset will be {}, Sum = 0 b) {1} : 1 All the possible subsets of this subset will be {} and {1}, Sum = 0 + 1 = 1 c) {1} : 1 All t
6 min read
Split array into minimum number of subsets such that elements of all pairs are present in different subsets at least once
Given an array arr[] consisting of N distinct integers, the task is to find the minimum number of times the array needs to be split into two subsets such that elements of each pair are present into two different subsets at least once. Examples: Input: arr[] = { 3, 4, 2, 1, 5 } Output: 3 Explanation: Possible pairs are { (1, 2), (1, 3), (1, 4), (1,
6 min read
Article Tags :
Practice Tags :