Find All Duplicate Subtrees
Last Updated :
15 Jul, 2022
Given a binary tree, find all duplicate subtrees. For each duplicate subtree, we only need to return the root node of any one of them. Two trees are duplicates if they have the same structure with the same node values.
Examples:
Input :
1
/ \
2 3
/ / \
4 2 4
/
4
Output :
2
/ and 4
4
Explanation: Above Trees are two duplicate subtrees.
Therefore, you need to return above trees root in the
form of a list.
The idea is to use hashing. We store inorder traversals of subtrees in a hash. Since simple inorder traversal cannot uniquely identify a tree, we use symbols like ‘(‘ and ‘)’ to represent NULL nodes.
We pass an Unordered Map in C++ as an argument to the helper function which recursively calculates inorder string and increases its count in map. If any string gets repeated, then it will imply duplication of the subtree rooted at that node so push that node in the Final result and return the vector of these nodes.
Implementation:
C++
#include <bits/stdc++.h>
using namespace std;
struct Node {
int data;
struct Node* left, *right;
};
string inorder(Node* node, unordered_map<string, int >& m)
{
if (!node)
return "" ;
string str = "(" ;
str += inorder(node->left, m);
str += to_string(node->data);
str += inorder(node->right, m);
str += ")" ;
if (m[str] == 1)
cout << node->data << " " ;
m[str]++;
return str;
}
void printAllDups(Node* root)
{
unordered_map<string, int > m;
inorder(root, m);
}
Node* newNode( int data)
{
Node* temp = new Node;
temp->data = data;
temp->left = temp->right = NULL;
return temp;
}
int main()
{
Node* root = NULL;
root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->right->left = newNode(2);
root->right->left->left = newNode(4);
root->right->right = newNode(4);
printAllDups(root);
return 0;
}
|
Java
import java.util.HashMap;
public class Duplicate_subtress {
static HashMap<String, Integer> m;
static class Node {
int data;
Node left;
Node right;
Node( int data){
this .data = data;
left = null ;
right = null ;
}
}
static String inorder(Node node)
{
if (node == null )
return "" ;
String str = "(" ;
str += inorder(node.left);
str += Integer.toString(node.data);
str += inorder(node.right);
str += ")" ;
if (m.get(str) != null && m.get(str)== 1 )
System.out.print( node.data + " " );
if (m.containsKey(str))
m.put(str, m.get(str) + 1 );
else
m.put(str, 1 );
return str;
}
static void printAllDups(Node root)
{
m = new HashMap<>();
inorder(root);
}
public static void main(String args[])
{
Node root = null ;
root = new Node( 1 );
root.left = new Node( 2 );
root.right = new Node( 3 );
root.left.left = new Node( 4 );
root.right.left = new Node( 2 );
root.right.left.left = new Node( 4 );
root.right.right = new Node( 4 );
printAllDups(root);
}
}
|
Python3
class newNode:
def __init__( self , data):
self .data = data
self .left = self .right = None
def inorder(node, m):
if ( not node):
return ""
Str = "("
Str + = inorder(node.left, m)
Str + = str (node.data)
Str + = inorder(node.right, m)
Str + = ")"
if ( Str in m and m[ Str ] = = 1 ):
print (node.data, end = " " )
if Str in m:
m[ Str ] + = 1
else :
m[ Str ] = 1
return Str
def printAllDups(root):
m = {}
inorder(root, m)
if __name__ = = '__main__' :
root = None
root = newNode( 1 )
root.left = newNode( 2 )
root.right = newNode( 3 )
root.left.left = newNode( 4 )
root.right.left = newNode( 2 )
root.right.left.left = newNode( 4 )
root.right.right = newNode( 4 )
printAllDups(root)
|
C#
using System;
using System.Collections.Generic;
class GFG
{
static Dictionary<String,
int > m = new Dictionary<String,
int >();
public class Node
{
public int data;
public Node left;
public Node right;
public Node( int data)
{
this .data = data;
left = null ;
right = null ;
}
}
static String inorder(Node node)
{
if (node == null )
return "" ;
String str = "(" ;
str += inorder(node.left);
str += (node.data).ToString();
str += inorder(node.right);
str += ")" ;
if (m.ContainsKey(str) && m[str] == 1 )
Console.Write(node.data + " " );
if (m.ContainsKey(str))
m[str] = m[str] + 1;
else
m.Add(str, 1);
return str;
}
static void printAllDups(Node root)
{
m = new Dictionary<String, int >();
inorder(root);
}
public static void Main(String []args)
{
Node root = null ;
root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.right.left = new Node(2);
root.right.left.left = new Node(4);
root.right.right = new Node(4);
printAllDups(root);
}
}
|
Javascript
<script>
class Node
{
constructor(data) {
this .left = null ;
this .right = null ;
this .data = data;
}
}
let m;
function inorder(node)
{
if (node == null )
return "" ;
let str = "(" ;
str += inorder(node.left);
str += toString(node.data);
str += inorder(node.right);
str += ")" ;
if (m.get(str) != null && m.get(str)==1 )
document.write( node.data + " " );
if (m.has(str))
m.set(str, m.get(str) + 1);
else
m.set(str, 1);
return str;
}
function printAllDups(root)
{
m = new Map();
inorder(root);
}
let root = null ;
root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.right.left = new Node(2);
root.right.left.left = new Node(4);
root.right.right = new Node(4);
printAllDups(root);
</script>
|
Time Complexity: O(N^2) Since string copying takes O(n) extra time.
Auxiliary Space: O(N^2) Since we are hashing a string for each node and length of this string can be of the order N.
Please Login to comment...