Detect Cycle in a Directed Graph
Last Updated :
19 Jun, 2024
Given the root of a Directed graph , The task is to check whether the graph contains a cycle or not.
Examples:
Input: N = 4, E = 6
Output: Yes
Explanation: The diagram clearly shows a cycle 0 -> 2 -> 0
Input: N = 4, E = 4
Output: No
Explanation: The diagram clearly shows no cycle.
Detect Cycle in a Directed Graph using DFS:
The problem can be solved based on the following idea:
To find cycle in a directed graph we can use the Depth First Traversal (DFS) technique. It is based on the idea that there is a cycle in a graph only if there is a back edge [i.e., a node points to one of its ancestors in a DFS tree] present in the graph.
To detect a back edge, we need to keep track of the nodes visited till now and the nodes that are in the current recursion stack [i.e., the current path that we are visiting]. If during recursion, we reach a node that is already in the recursion stack, there is a cycle present in the graph.
Note: If the graph is disconnected then get the DFS forest and check for a cycle in individual trees by checking back edges.
Step-by-step algorithm:
- Create a recursive dfs function that has the following parameters – current vertex, visited array, and recursion stack .
- Mark the current node as visited and also mark the index in the recursion stack.
- Iterate a loop for all the vertices and for each vertex, call the recursive function if it is not yet visited (This step is done to make sure that if there is a forest of graphs, we are checking each forest):
- In each recursion call, Find all the adjacent vertices of the current vertex which are not visited:
- If an adjacent vertex is already marked in the recursion stack then return true .
- Otherwise, call the recursive function for that adjacent vertex.
- While returning from the recursion call, unmark the current node from the recursion stack, to represent that the current node is no longer a part of the path being traced.
- If any of the functions returns true , stop the future function calls and return true as the answer.
Illustration:
Below is the graph showing how to detect cycle in a graph using DFS:
Below is the implementation of the above approach:
C++
// A C++ Program to detect cycle in a graph
#include <bits/stdc++.h>
using namespace std;
class Graph {
// No. of vertices
int V;
// Pointer to an array containing adjacency lists
list<int>* adj;
// Used by isCyclic()
bool isCyclicUtil(int v, bool visited[], bool* rs);
public:
Graph(int V);
void addEdge(int v, int w);
bool isCyclic();
};
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}
void Graph::addEdge(int v, int w)
{
// Add w to v’s list.
adj[v].push_back(w);
}
// DFS function to find if a cycle exists
bool Graph::isCyclicUtil(int v, bool visited[],
bool* recStack)
{
if (visited[v] == false) {
// Mark the current node as visited
// and part of recursion stack
visited[v] = true;
recStack[v] = true;
// Recur for all the vertices adjacent to this
// vertex
list<int>::iterator i;
for (i = adj[v].begin(); i != adj[v].end(); ++i) {
if (!visited[*i]
&& isCyclicUtil(*i, visited, recStack))
return true;
else if (recStack[*i])
return true;
}
}
// Remove the vertex from recursion stack
recStack[v] = false;
return false;
}
// Returns true if the graph contains a cycle, else false
bool Graph::isCyclic()
{
// Mark all the vertices as not visited
// and not part of recursion stack
bool* visited = new bool[V];
bool* recStack = new bool[V];
for (int i = 0; i < V; i++) {
visited[i] = false;
recStack[i] = false;
}
// Call the recursive helper function
// to detect cycle in different DFS trees
for (int i = 0; i < V; i++)
if (!visited[i]
&& isCyclicUtil(i, visited, recStack))
return true;
return false;
}
// Driver code
int main()
{
// Create a graph
Graph g(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
// Function call
if (g.isCyclic())
cout << "Graph contains cycle";
else
cout << "Graph doesn't contain cycle";
return 0;
}
Java
// A Java Program to detect cycle in a graph
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
class Graph {
private final int V;
private final List<List<Integer> > adj;
public Graph(int V)
{
this.V = V;
adj = new ArrayList<>(V);
for (int i = 0; i < V; i++)
adj.add(new LinkedList<>());
}
// Function to check if cycle exists
private boolean isCyclicUtil(int i, boolean[] visited,
boolean[] recStack)
{
// Mark the current node as visited and
// part of recursion stack
if (recStack[i])
return true;
if (visited[i])
return false;
visited[i] = true;
recStack[i] = true;
List<Integer> children = adj.get(i);
for (Integer c : children)
if (isCyclicUtil(c, visited, recStack))
return true;
recStack[i] = false;
return false;
}
private void addEdge(int source, int dest)
{
adj.get(source).add(dest);
}
// Returns true if the graph contains a
// cycle, else false.
private boolean isCyclic()
{
// Mark all the vertices as not visited and
// not part of recursion stack
boolean[] visited = new boolean[V];
boolean[] recStack = new boolean[V];
// Call the recursive helper function to
// detect cycle in different DFS trees
for (int i = 0; i < V; i++)
if (isCyclicUtil(i, visited, recStack))
return true;
return false;
}
// Driver code
public static void main(String[] args)
{
Graph graph = new Graph(4);
graph.addEdge(0, 1);
graph.addEdge(0, 2);
graph.addEdge(1, 2);
graph.addEdge(2, 0);
graph.addEdge(2, 3);
graph.addEdge(3, 3);
// Function call
if (graph.isCyclic())
System.out.println("Graph contains cycle");
else
System.out.println("Graph doesn't "
+ "contain cycle");
}
}
// This code is contributed by Sagar Shah.
Python
# Python program to detect cycle
# in a graph
from collections import defaultdict
class Graph():
def __init__(self, vertices):
self.graph = defaultdict(list)
self.V = vertices
def addEdge(self, u, v):
self.graph[u].append(v)
def isCyclicUtil(self, v, visited, recStack):
# Mark current node as visited and
# adds to recursion stack
visited[v] = True
recStack[v] = True
# Recur for all neighbours
# if any neighbour is visited and in
# recStack then graph is cyclic
for neighbour in self.graph[v]:
if visited[neighbour] == False:
if self.isCyclicUtil(neighbour, visited, recStack) == True:
return True
elif recStack[neighbour] == True:
return True
# The node needs to be popped from
# recursion stack before function ends
recStack[v] = False
return False
# Returns true if graph is cyclic else false
def isCyclic(self):
visited = [False] * (self.V + 1)
recStack = [False] * (self.V + 1)
for node in range(self.V):
if visited[node] == False:
if self.isCyclicUtil(node, visited, recStack) == True:
return True
return False
# Driver code
if __name__ == '__main__':
g = Graph(4)
g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 2)
g.addEdge(2, 0)
g.addEdge(2, 3)
g.addEdge(3, 3)
if g.isCyclic() == 1:
print("Graph contains cycle")
else:
print("Graph doesn't contain cycle")
# Thanks to Divyanshu Mehta for contributing this code
C#
// A C# Program to detect cycle in a graph
using System;
using System.Collections.Generic;
public class Graph {
private readonly int V;
private readonly List<List<int> > adj;
public Graph(int V)
{
this.V = V;
adj = new List<List<int> >(V);
for (int i = 0; i < V; i++)
adj.Add(new List<int>());
}
// Function to check if cycle exists
private bool isCyclicUtil(int i, bool[] visited,
bool[] recStack)
{
// Mark the current node as visited and
// part of recursion stack
if (recStack[i])
return true;
if (visited[i])
return false;
visited[i] = true;
recStack[i] = true;
List<int> children = adj[i];
foreach(int c in children) if (
isCyclicUtil(c, visited, recStack)) return true;
recStack[i] = false;
return false;
}
private void addEdge(int sou, int dest)
{
adj[sou].Add(dest);
}
// Returns true if the graph contains a
// cycle, else false
private bool isCyclic()
{
// Mark all the vertices as not visited and
// not part of recursion stack
bool[] visited = new bool[V];
bool[] recStack = new bool[V];
// Call the recursive helper function to
// detect cycle in different DFS trees
for (int i = 0; i < V; i++)
if (isCyclicUtil(i, visited, recStack))
return true;
return false;
}
// Driver code
public static void Main(String[] args)
{
Graph graph = new Graph(4);
graph.addEdge(0, 1);
graph.addEdge(0, 2);
graph.addEdge(1, 2);
graph.addEdge(2, 0);
graph.addEdge(2, 3);
graph.addEdge(3, 3);
// Function call
if (graph.isCyclic())
Console.WriteLine("Graph contains cycle");
else
Console.WriteLine("Graph doesn't "
+ "contain cycle");
}
}
// This code contributed by Rajput-Ji
Javascript
// A JavaScript Program to detect cycle in a graph
let V;
let adj=[];
function Graph(v)
{
V=v;
for (let i = 0; i < V; i++)
adj.push([]);
}
// Function to check if cycle exists
function isCyclicUtil(i,visited,recStack)
{
// Mark the current node as visited and
// part of recursion stack
if (recStack[i])
return true;
if (visited[i])
return false;
visited[i] = true;
recStack[i] = true;
let children = adj[i];
for (let c=0;c< children.length;c++)
if (isCyclicUtil(children[c], visited, recStack))
return true;
recStack[i] = false;
return false;
}
function addEdge(source,dest)
{
adj [source].push(dest);
}
// Returns true if the graph contains a
// cycle, else false.
function isCyclic()
{
// Mark all the vertices as not visited and
// not part of recursion stack
let visited = new Array(V);
let recStack = new Array(V);
for(let i=0;i<V;i++)
{
visited[i]=false;
recStack[i]=false;
}
// Call the recursive helper function to
// detect cycle in different DFS trees
for (let i = 0; i < V; i++)
if (isCyclicUtil(i, visited, recStack))
return true;
return false;
}
// Driver code
Graph(4);
addEdge(0, 1);
addEdge(0, 2);
addEdge(1, 2);
addEdge(2, 0);
addEdge(2, 3);
addEdge(3, 3);
if(isCyclic())
console.log("Graph contains cycle");
else
console.log("Graph doesn't "
+ "contain cycle");
// This code is contributed by patel2127
OutputGraph contains cycle
Time Complexity: O(V + E), the Time Complexity of this method is the same as the time complexity of DFS traversal which is O(V+E).
Auxiliary Space: O(V). To store the visited and recursion stack O(V) space is needed.
In the below article, another O(V + E) method is discussed :
Detect Cycle in a direct graph using colors
Detect Cycle in a Directed Graph using Topological Sorting:
Here we are using Kahn’s algorithm for topological sorting, if it successfully removes all vertices from the graph, it’s a DAG with no cycles. If there are remaining vertices with in-degrees greater than 0 , it indicates the presence of at least one cycle in the graph. Hence, if we are not able to get all the vertices in topological sorting then there must be at least one cycle.
Below is the implementation of the above approach:
C++
#include <iostream>
#include <queue>
#include <vector>
using namespace std;
class Graph {
private:
int V; // number of vertices
vector<vector<int> > adj; // adjacency list
public:
Graph(int V)
{
this->V = V;
adj.resize(V);
}
void addEdge(int v, int w) { adj[v].push_back(w); }
bool isCyclic()
{
vector<int> inDegree(
V, 0); // stores in-degree of each vertex
queue<int>
q; // queue to store vertices with 0 in-degree
int visited = 0; // count of visited vertices
// calculate in-degree of each vertex
for (int u = 0; u < V; u++) {
for (auto v : adj[u]) {
inDegree[v]++;
}
}
// enqueue vertices with 0 in-degree
for (int u = 0; u < V; u++) {
if (inDegree[u] == 0) {
q.push(u);
}
}
// BFS traversal
while (!q.empty()) {
int u = q.front();
q.pop();
visited++;
// reduce in-degree of adjacent vertices
for (auto v : adj[u]) {
inDegree[v]--;
// if in-degree becomes 0, enqueue the
// vertex
if (inDegree[v] == 0) {
q.push(v);
}
}
}
return visited != V; // if not all vertices are
// visited, there is a cycle
}
};
int main()
{
Graph g(6);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 3);
g.addEdge(4, 1);
g.addEdge(4, 5);
g.addEdge(5, 3);
if (g.isCyclic()) {
cout << "Graph contains cycle." << endl;
}
else {
cout << "Graph does not contain cycle." << endl;
}
return 0;
}
Java
// Java Program to implement above approach
// Java Program to detect cycle in a graph
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Queue;
class Graph {
private int V; // number of vertices
private ArrayList<ArrayList<Integer> >
adj; // adjacency list
public Graph(int V)
{
this.V = V;
adj = new ArrayList<>(V);
for (int i = 0; i < V; i++) {
adj.add(new ArrayList<>());
}
}
public void addEdge(int v, int w) { adj.get(v).add(w); }
public boolean isCyclic()
{
int[] inDegree
= new int[V]; // stores in-degree of each vertex
Queue<Integer> q
= new LinkedList<>(); // queue to store vertices
// with 0 in-degree
int visited = 0; // count of visited vertices
// calculate in-degree of each vertex
for (int u = 0; u < V; u++) {
for (int v : adj.get(u)) {
inDegree[v]++;
}
}
// enqueue vertices with 0 in-degree
for (int u = 0; u < V; u++) {
if (inDegree[u] == 0) {
q.add(u);
}
}
// BFS traversal
while (!q.isEmpty()) {
int u = q.poll();
visited++;
// reduce in-degree of adjacent vertices
for (int v : adj.get(u)) {
inDegree[v]--;
// if in-degree becomes 0, enqueue the
// vertex
if (inDegree[v] == 0) {
q.add(v);
}
}
}
return visited != V; // if not all vertices are
// visited, there is a cycle
}
}
// Driver code
public class Main {
public static void main(String[] args)
{
Graph g = new Graph(6);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 3);
g.addEdge(4, 1);
g.addEdge(4, 5);
g.addEdge(5, 3);
if (g.isCyclic()) {
System.out.println("Graph contains cycle.");
}
else {
System.out.println(
"Graph does not contain cycle.");
}
}
}
Python
from collections import deque
class Graph:
def __init__(self, V):
self.V = V
self.adj = [[] for _ in range(V)]
def addEdge(self, v, w):
self.adj[v].append(w)
def isCyclic(self):
inDegree = [0] * self.V
q = deque()
visited = 0
# Calculate in-degree of each vertex
for u in range(self.V):
for v in self.adj[u]:
inDegree[v] += 1
# Enqueue vertices with 0 in-degree
for u in range(self.V):
if inDegree[u] == 0:
q.append(u)
# BFS traversal
while q:
u = q.popleft()
visited += 1
# Reduce in-degree of adjacent vertices
for v in self.adj[u]:
inDegree[v] -= 1
# If in-degree becomes 0, enqueue the vertex
if inDegree[v] == 0:
q.append(v)
return visited != self.V # If not all vertices are visited, there is a cycle
# Main driver code
g = Graph(6)
g.addEdge(0, 1)
g.addEdge(0, 2)
g.addEdge(1, 3)
g.addEdge(4, 1)
g.addEdge(4, 5)
g.addEdge(5, 3)
if g.isCyclic():
print("Graph contains a cycle.")
else:
print("Graph does not contain a cycle.")
# This code is contributed by Rishabh Mathur
C#
using System;
using System.Collections.Generic;
class Graph {
private int V; // number of vertices
private List<List<int> > adj; // adjacency list
public Graph(int V)
{
this.V = V;
adj = new List<List<int> >();
for (int i = 0; i < V; i++) {
adj.Add(new List<int>());
}
}
public void AddEdge(int v, int w) { adj[v].Add(w); }
public bool IsCyclic()
{
int[] inDegree
= new int[V]; // stores in-degree of each vertex
Queue<int> q
= new Queue<int>(); // queue to store vertices
// with 0 in-degree
int visited = 0; // count of visited vertices
// calculate in-degree of each vertex
for (int u = 0; u < V; u++) {
foreach(var v in adj[u]) { inDegree[v]++; }
}
// enqueue vertices with 0 in-degree
for (int u = 0; u < V; u++) {
if (inDegree[u] == 0) {
q.Enqueue(u);
}
}
// BFS traversal
while (q.Count > 0) {
int u = q.Dequeue();
visited++;
// reduce in-degree of adjacent vertices
foreach(var v in adj[u])
{
inDegree[v]--;
// if in-degree becomes 0, enqueue the
// vertex
if (inDegree[v] == 0) {
q.Enqueue(v);
}
}
}
return visited != V; // if not all vertices are
// visited, there is a cycle
}
}
class Program {
static void Main()
{
Graph g = new Graph(6);
g.AddEdge(0, 1);
g.AddEdge(0, 2);
g.AddEdge(1, 3);
g.AddEdge(4, 1);
g.AddEdge(4, 5);
g.AddEdge(5, 3);
if (g.IsCyclic()) {
Console.WriteLine("Graph contains cycle.");
}
else {
Console.WriteLine(
"Graph does not contain cycle.");
}
}
}
// This code is contributed by shivamgupta0987654321
Javascript
class Graph {
constructor(V) {
this.V = V; // number of vertices
this.adj = new Array(V).fill(null).map(() => []); // adjacency list
}
addEdge(v, w) {
this.adj[v].push(w);
}
isCyclic() {
const inDegree = new Array(this.V).fill(0); // stores in-degree of each vertex
const q = []; // queue to store vertices with 0 in-degree
let visited = 0; // count of visited vertices
// calculate in-degree of each vertex
for (let u = 0; u < this.V; u++) {
for (let v of this.adj[u]) {
inDegree[v]++;
}
}
// enqueue vertices with 0 in-degree
for (let u = 0; u < this.V; u++) {
if (inDegree[u] === 0) {
q.push(u);
}
}
// BFS traversal
while (q.length > 0) {
const u = q.shift();
visited++;
// reduce in-degree of adjacent vertices
for (let v of this.adj[u]) {
inDegree[v]--;
// if in-degree becomes 0, enqueue the vertex
if (inDegree[v] === 0) {
q.push(v);
}
}
}
return visited !== this.V; // if not all vertices are visited, there is a cycle
}
}
// Driver code to test above methods
function main() {
const g = new Graph(6);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 3);
g.addEdge(4, 1);
g.addEdge(4, 5);
g.addEdge(5, 3);
if (g.isCyclic()) {
console.log("Graph contains a cycle.");
} else {
console.log("Graph does not contain a cycle.");
}
}
main();
OutputGraph does not contain cycle.
Time Complexity: O(V + E), the time complexity of this method is the same as the time complexity of DFS traversal which is O(V+E).
Auxiliary Space: O(V). To store the visited and recursion stack O(V) space is needed.
Please Login to comment...