Euler Circuit in a Directed Graph
Last Updated :
31 Jan, 2023
Eulerian Path is a path in graph that visits every edge exactly once. Eulerian Circuit is an Eulerian Path which starts and ends on the same vertex.
A graph is said to be eulerian if it has a eulerian cycle. We have discussed eulerian circuit for an undirected graph. In this post, the same is discussed for a directed graph.
For example, the following graph has eulerian cycle as {1, 0, 3, 4, 0, 2, 1}
How to check if a directed graph is eulerian?
A directed graph has an eulerian cycle if following conditions are true
- All vertices with nonzero degree belong to a single strongly connected component.
- In degree is equal to the out degree for every vertex.
We can detect singly connected component using Kosaraju’s DFS based simple algorithm.
To compare in degree and out-degree, we need to store in degree and out-degree of every vertex. Out degree can be obtained by the size of an adjacency list. In degree can be stored by creating an array of size equal to the number of vertices.
Following implementations of above approach.
C++
#include<iostream>
#include <list>
#define CHARS 26
using namespace std;
class Graph
{
int V;
list< int > *adj;
int *in;
public :
Graph( int V);
~Graph() { delete [] adj; delete [] in; }
void addEdge( int v, int w) { adj[v].push_back(w); (in[w])++; }
bool isEulerianCycle();
bool isSC();
void DFSUtil( int v, bool visited[]);
Graph getTranspose();
};
Graph::Graph( int V)
{
this ->V = V;
adj = new list< int >[V];
in = new int [V];
for ( int i = 0; i < V; i++)
in[i] = 0;
}
bool Graph::isEulerianCycle()
{
if (isSC() == false )
return false ;
for ( int i = 0; i < V; i++)
if (adj[i].size() != in[i])
return false ;
return true ;
}
void Graph::DFSUtil( int v, bool visited[])
{
visited[v] = true ;
list< int >::iterator i;
for (i = adj[v].begin(); i != adj[v].end(); ++i)
if (!visited[*i])
DFSUtil(*i, visited);
}
Graph Graph::getTranspose()
{
Graph g(V);
for ( int v = 0; v < V; v++)
{
list< int >::iterator i;
for (i = adj[v].begin(); i != adj[v].end(); ++i)
{
g.adj[*i].push_back(v);
(g.in[v])++;
}
}
return g;
}
bool Graph::isSC()
{
bool visited[V];
for ( int i = 0; i < V; i++)
visited[i] = false ;
int n;
for (n = 0; n < V; n++)
if (adj[n].size() > 0)
break ;
DFSUtil(n, visited);
for ( int i = 0; i < V; i++)
if (adj[i].size() > 0 && visited[i] == false )
return false ;
Graph gr = getTranspose();
for ( int i = 0; i < V; i++)
visited[i] = false ;
gr.DFSUtil(n, visited);
for ( int i = 0; i < V; i++)
if (adj[i].size() > 0 && visited[i] == false )
return false ;
return true ;
}
int main()
{
Graph g(5);
g.addEdge(1, 0);
g.addEdge(0, 2);
g.addEdge(2, 1);
g.addEdge(0, 3);
g.addEdge(3, 4);
g.addEdge(4, 0);
if (g.isEulerianCycle())
cout << "Given directed graph is eulerian n" ;
else
cout << "Given directed graph is NOT eulerian n" ;
return 0;
}
|
Java
import java.io.*;
import java.util.*;
import java.util.LinkedList;
class Graph
{
private int V;
private LinkedList<Integer> adj[];
private int in[];
Graph( int v)
{
V = v;
adj = new LinkedList[v];
in = new int [V];
for ( int i= 0 ; i<v; ++i)
{
adj[i] = new LinkedList();
in[i] = 0 ;
}
}
void addEdge( int v, int w)
{
adj[v].add(w);
in[w]++;
}
void DFSUtil( int v,Boolean visited[])
{
visited[v] = true ;
int n;
Iterator<Integer> i =adj[v].iterator();
while (i.hasNext())
{
n = i.next();
if (!visited[n])
DFSUtil(n,visited);
}
}
Graph getTranspose()
{
Graph g = new Graph(V);
for ( int v = 0 ; v < V; v++)
{
Iterator<Integer> i = adj[v].listIterator();
while (i.hasNext())
{
g.adj[i.next()].add(v);
(g.in[v])++;
}
}
return g;
}
Boolean isSC()
{
Boolean visited[] = new Boolean[V];
for ( int i = 0 ; i < V; i++)
visited[i] = false ;
DFSUtil( 0 , visited);
for ( int i = 0 ; i < V; i++)
if (visited[i] == false )
return false ;
Graph gr = getTranspose();
for ( int i = 0 ; i < V; i++)
visited[i] = false ;
gr.DFSUtil( 0 , visited);
for ( int i = 0 ; i < V; i++)
if (visited[i] == false )
return false ;
return true ;
}
Boolean isEulerianCycle()
{
if (isSC() == false )
return false ;
for ( int i = 0 ; i < V; i++)
if (adj[i].size() != in[i])
return false ;
return true ;
}
public static void main (String[] args) throws java.lang.Exception
{
Graph g = new Graph( 5 );
g.addEdge( 1 , 0 );
g.addEdge( 0 , 2 );
g.addEdge( 2 , 1 );
g.addEdge( 0 , 3 );
g.addEdge( 3 , 4 );
g.addEdge( 4 , 0 );
if (g.isEulerianCycle())
System.out.println( "Given directed graph is eulerian " );
else
System.out.println( "Given directed graph is NOT eulerian " );
}
}
|
Python3
from collections import defaultdict
class Graph():
def __init__( self , vertices):
self .V = vertices
self .graph = defaultdict( list )
self .IN = [ 0 ] * vertices
def addEdge( self , v, u):
self .graph[v].append(u)
self .IN[u] + = 1
def DFSUtil( self , v, visited):
visited[v] = True
for node in self .graph[v]:
if visited[node] = = False :
self .DFSUtil(node, visited)
def getTranspose( self ):
gr = Graph( self .V)
for node in range ( self .V):
for child in self .graph[node]:
gr.addEdge(child, node)
return gr
def isSC( self ):
visited = [ False ] * self .V
v = 0
for v in range ( self .V):
if len ( self .graph[v]) > 0 :
break
self .DFSUtil(v, visited)
for i in range ( self .V):
if visited[i] = = False :
return False
gr = self .getTranspose()
visited = [ False ] * self .V
gr.DFSUtil(v, visited)
for i in range ( self .V):
if visited[i] = = False :
return False
return True
def isEulerianCycle( self ):
if self .isSC() = = False :
return False
for v in range ( self .V):
if len ( self .graph[v]) ! = self .IN[v]:
return False
return True
g = Graph( 5 );
g.addEdge( 1 , 0 );
g.addEdge( 0 , 2 );
g.addEdge( 2 , 1 );
g.addEdge( 0 , 3 );
g.addEdge( 3 , 4 );
g.addEdge( 4 , 0 );
if g.isEulerianCycle():
print ( "Given directed graph is eulerian" );
else :
print ( "Given directed graph is NOT eulerian" );
|
C#
using System;
using System.Collections.Generic;
class Graph{
public int V;
public List< int > []adj;
public int []init;
Graph( int v)
{
V = v;
adj = new List< int >[v];
init = new int [V];
for ( int i = 0; i < v; ++i)
{
adj[i] = new List< int >();
init[i] = 0;
}
}
void addEdge( int v, int w)
{
adj[v].Add(w);
init[w]++;
}
void DFSUtil( int v, Boolean []visited)
{
visited[v] = true ;
foreach ( int i in adj[v])
{
if (!visited[i])
DFSUtil(i, visited);
}
}
Graph getTranspose()
{
Graph g = new Graph(V);
for ( int v = 0; v < V; v++)
{
foreach ( int i in adj[v])
{
g.adj[i].Add(v);
(g.init[v])++;
}
}
return g;
}
Boolean isSC()
{
Boolean []visited = new Boolean[V];
for ( int i = 0; i < V; i++)
visited[i] = false ;
DFSUtil(0, visited);
for ( int i = 0; i < V; i++)
if (visited[i] == false )
return false ;
Graph gr = getTranspose();
for ( int i = 0; i < V; i++)
visited[i] = false ;
gr.DFSUtil(0, visited);
for ( int i = 0; i < V; i++)
if (visited[i] == false )
return false ;
return true ;
}
Boolean isEulerianCycle()
{
if (isSC() == false )
return false ;
for ( int i = 0; i < V; i++)
if (adj[i].Count != init[i])
return false ;
return true ;
}
public static void Main(String[] args)
{
Graph g = new Graph(5);
g.addEdge(1, 0);
g.addEdge(0, 2);
g.addEdge(2, 1);
g.addEdge(0, 3);
g.addEdge(3, 4);
g.addEdge(4, 0);
if (g.isEulerianCycle())
Console.WriteLine( "Given directed " +
"graph is eulerian " );
else
Console.WriteLine( "Given directed " +
"graph is NOT eulerian " );
}
}
|
Javascript
<script>
class Graph
{
constructor(v)
{
this .V = v;
this .adj = new Array(v);
this . in = new Array(v);
for (let i=0; i<v; ++i)
{
this .adj[i] = [];
this . in [i]=0;
}
}
addEdge(v,w)
{
this .adj[v].push(w);
this . in [w]++;
}
DFSUtil(v,visited)
{
visited[v] = true ;
let n;
for (let i of this .adj[v])
{
n = i;
if (!visited[n])
this .DFSUtil(n,visited);
}
}
getTranspose()
{
let g = new Graph( this .V);
for (let v = 0; v < this .V; v++)
{
for (let i of this .adj[v])
{
g.adj[i].push(v);
(g. in [v])++;
}
}
return g;
}
isSC()
{
let visited = new Array( this .V);
for (let i = 0; i < this .V; i++)
visited[i] = false ;
this .DFSUtil(0, visited);
for (let i = 0; i < this .V; i++)
if (visited[i] == false )
return false ;
let gr = this .getTranspose();
for (let i = 0; i < this .V; i++)
visited[i] = false ;
gr.DFSUtil(0, visited);
for (let i = 0; i < this .V; i++)
if (visited[i] == false )
return false ;
return true ;
}
isEulerianCycle()
{
if ( this .isSC() == false )
return false ;
for (let i = 0; i < this .V; i++)
if ( this .adj[i].length != this . in [i])
return false ;
return true ;
}
}
let g = new Graph(5);
g.addEdge(1, 0);
g.addEdge(0, 2);
g.addEdge(2, 1);
g.addEdge(0, 3);
g.addEdge(3, 4);
g.addEdge(4, 0);
if (g.isEulerianCycle())
document.write( "Given directed graph is eulerian " );
else
document.write( "Given directed graph is NOT eulerian " );
</script>
|
Output
Given directed graph is eulerian n
Time complexity of the above implementation is O(V + E) as Kosaraju’s algorithm takes O(V + E) time. After running Kosaraju’s algorithm we traverse all vertices and compare in degree with out degree which takes O(V) time.
Auxiliary Space : O(V), since an extra visited array of size V is required.
See following as an application of this.
Find if the given array of strings can be chained to form a circle.
Please Login to comment...