Open In App

Python NumPy – Practice Exercises, Questions, and Solutions

Last Updated : 30 Aug, 2021
Improve
Improve
Like Article
Like
Save
Share
Report

Python NumPy is a general-purpose array processing package. It provides fast and versatile n-dimensional arrays and tools for working with these arrays. It provides various computing tools such as comprehensive mathematical functions, random number generator and it’s easy to use syntax makes it highly accessible and productive for programmers from any background.

Python NumPy - Practice Exercises, Questions, and Solutions

This NumPy exercise will help the learners to get a better understanding of NumPy arrays. This practice page consists of a huge set of NumPy programs like NumPy array, Matrix, handling indexing in NumPy, working with Mathematics. Statistics and all sort of frequently encountered problems.

Questions on NumPy Array

Questions on NumPy Matrix

Questions on NumPy Indexing

Questions on NumPy Linear Algebra

Questions on NumPy Random

Questions on NumPy Sorting and Searching

Questions on NumPy Mathematics

Questions on NumPy Statistics

Questions on Polynomial

Questions on NumPy Strings

More Questions on NumPy



Previous Article
Next Article

Similar Reads

Python Exercise with Practice Questions and Solutions
Python Exercise: Practice makes you perfect in everything. This proverb always proves itself correct. Just like this, if you are a Python learner, then regular practice of Python exercises makes you more confident and sharpens your skills. So, to test your skills, go through these Python exercises with solutions. Python is a widely used general-pur
7 min read
Pandas Exercises and Programs
Pandas is an open-source Python Library that is made mainly for working with relational or labelled data both easily and intuitively. This Python library is built on top of the NumPy library, providing various operations and data structures for manipulating numerical data and time series. Pandas is fast and it has high performance & productivit
6 min read
Matplotlib - Practice, Exercise, and Solutions
Python Matplotlib is a library for visualization that helps to create a variety of charts in a variety of hardcopy formats. You might have seen various Matplotlib tutorials but the best way to gain a command over this library is by practicing more and more. This Matplotlib exercise helps you learn Matplotlib using a set of detailed questions for pr
5 min read
Python | Numpy numpy.resize()
With the help of Numpy numpy.resize(), we can resize the size of an array. Array can be of any shape but to resize it we just need the size i.e (2, 2), (2, 3) and many more. During resizing numpy append zeros if values at a particular place is missing. Parameters: new_shape : [tuple of ints, or n ints] Shape of resized array refcheck : [bool, optio
2 min read
Python | Numpy numpy.transpose()
With the help of Numpy numpy.transpose(), We can perform the simple function of transpose within one line by using numpy.transpose() method of Numpy. It can transpose the 2-D arrays on the other hand it has no effect on 1-D arrays. This method transpose the 2-D numpy array. Parameters: axes : [None, tuple of ints, or n ints] If anyone wants to pass
2 min read
Python | Numpy numpy.ndarray.__lt__()
With the help of numpy.ndarray.__lt__() method of Numpy, We can find that which element in an array is less than the value which is provided in the parameter. It will return you numpy array with boolean type having only values True and False. Syntax: ndarray.__lt__($self, value, /) Return: self<value Example #1 : In this example we can see that
1 min read
Python | Numpy numpy.ndarray.__gt__()
With the help of numpy.ndarray.__gt__() method of Numpy, We can find that which element in an array is greater then the value which is provided in the parameter. It will return you numpy array with boolean type having only values True and False. Syntax: ndarray.__gt__($self, value, /) Return: self>value Example #1 : In this example we can see th
1 min read
Python | Numpy numpy.ndarray.__le__()
With the help of numpy.ndarray.__le__() method of Numpy, We can find that which element in an array is less than or equal to the value which is provided in the parameter. It will return you numpy array with boolean type having only values True and False. Syntax: ndarray.__le__($self, value, /) Return: self<=value Example #1 : In this example we
1 min read
Python | Numpy numpy.ndarray.__ge__()
With the help of numpy.ndarray.__ge__() method of Numpy, We can find that which element in an array is greater then or equal to the value which is provided in the parameter. It will return you numpy array with boolean type having only values True and False. Syntax: ndarray.__ge__($self, value, /) Return: self>=value Example #1 : In this example
1 min read
Python | Numpy numpy.ndarray.__ne__()
With the help of numpy.ndarray.__ne__() method of Numpy, We can find that which element in an array is not equal to the value which is provided in the parameter. It will return you numpy array with boolean type having only values True and False. Syntax: ndarray.__ne__($self, value, /) Return: self!=value Example #1 : In this example we can see that
1 min read
Article Tags :
Practice Tags :
three90RightbarBannerImg